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Abstract

Griffiths and Tenenbaum (2006) asked individuals to make predictions about the duration or extent of everyday

events (e.g., cake baking times), and reported that predictions were optimal, employing Bayesian inference based

on veridical prior distributions. Although the predictions conformed strikingly to statistics of the world, they

reflect averages over many individuals. On the conjecture that the accuracy of the group response is chiefly a

consequence of aggregating across individuals, we constructed simple, heuristic approximations to the Bayesian

model premised on the hypothesis that individuals have access merely to a sample of k instances drawn from the

relevant distribution. The accuracy of the group response reported by Griffiths and Tenenbaum could be accounted

for by supposing that individuals each utilize only two instances. Moreover, the variability of the group data is

more consistent with this small-sample hypothesis than with the hypothesis that people utilize veridical or nearly

veridical representations of the underlying prior distributions. Our analyses lead to a qualitatively different view

of how individuals reason from past experience than the view espoused by Griffith and Tenenbaum.

2



1 Introduction

In 1906, Francis Galton was impressed with an event in which visitors to the West of England Fat Stock and Poul-

try Exhibition were each asked to write down their individual estimates of the weight of a certain ox. Obtaining

the original responses, Galton noted that the group average (1197 pounds) was strikingly close to the measured

weight of the ox (1198 pounds). This effect, ultimately a reflection of the statistical law of large numbers, has

come to be commonly referred to as the Wisdom of Crowds effect. (See Surowiecki, 2004, for a highly readable

review.) The present article points out that this phenomenon can lead to an inflated estimate of the amount of

information individuals possess about real world distributions.

Griffiths and Tenenbaum (2006; henceforth abbreviated G&T) evaluated individuals’ ability to make con-

ditional estimates regarding “everyday” domains with which they would have had some first- or second-hand

experience. Some were commonplace, such as human lifespans and move run times; others were less so, such as

cake baking times and the reigns of pharaohs. In their study, G&T asked individuals questions such as

If you were assessing an insurance case for an 18-year-old man, what would you predict for his

lifespan?

If your friend read you her favorite line of poetry, and told you it was line 5 of a poem, what would

you predict for the total length of the poem?

If you opened a book about the history of ancient Egypt to a page listing the reigns of the pharaohs,

and noticed that at 4000 BC a particular pharaoh had been ruling for 11 years, what would you predict

for the total duration of his reign?

If you were calling a telephone box office to book tickets and had been on hold for 3 minutes, what

would you predict for the total time you would be on hold?

The average responses revealed what G&T termed a “close correspondence between peoples implicit probabilistic

models and the statistics of the world.” To elaborate, G&T constructed a normative prediction based on Bayesian

inference and a veridical prior distribution over the domains in question, which G&T were able to obtain from

various sources on the web (e.g., mortality statistics by age).

The normative model yielded an excellent fit to the human predictions, suggesting that the computations

underlying higher-level kinds of judgment and reasoning may have a statistical sophistication that has often been
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assumed to be absent from the domain of higher-order cognition (even though it is often believed to be present in

perceptual inference). We now describe the G&T analysis in more detail, and then propose an alternative account,

which suggests quite different conclusions about the nature of higher-level judgment and reasoning.

2 The G&T analysis

Consider a prediction query of the form, “If a person has lived to age tcur, what age ttotal are they likely to live to?”

G&T modeled human predictions with a theory based on four key claims:

1. Optimal (Bayesian) inference: Individuals make a prediction for ttotal in accordance with Bayes rule,

which specifies the posterior distribution for ttotal as:

p(ttotal|tcur) =
p(tcur|ttotal)p(ttotal)R

τ
p(tcur|τ)p(τ)

. (1)

2. Prior distribution: Past real-world experience provides individuals with a veridical prior distribution over

the domain in question, p(ttotal). For example, in the case of predicting human lifespans, G&T claim that

individuals have available a distribution that specifies the probability of living to age ttotal for any ttotal.

3. Likelihood function: Prediction within the Bayesian framework requires an assumption about how the

query was generated, i.e., how the experimenter selects a value of tcur. In the prediction equation, this

assumption is cast as p(tcur|ttotal). G&T hypothesize that individuals assume that the experimenter first has

in mind a value of ttotal, and then chooses a tcur from a uniform distribution over the interval [0, ttotal]. In

Tenenbaum and Griffiths (2001), this assumption is referred to as the size principle.

4. Prediction function: Formulating a scalar prediction for ttotal requires summarizing the posterior distribu-

tion, p(ttotal|tcur), in some manner. G&T assume that individuals compute the median of the distribution.

3 An alternative approach: Reasoning from samples

Suppose that individuals do not have available veridical prior distributions over each domain, but can recall merely

a sample of instances of size k that they have encountered or heard about. Let’s refer to this conjecture as the
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k-sample hypothesis. If k is small, each individual has sparse knowledge. For example, knowing about k = 2

poems that have 5 and 12 lines total is hardly what one would consider to be a “close correspondence” to the

veridical prior distribution, p(ttotal), over poem lengths, which requires knowledge of the proportion of all poems

that have length ttotal for all ttotal.

Even though individuals have sparse knowledge according to the k-sample hypothesis, the collective mind of

the crowd may have a far more complete picture of the veridical prior distribution. One should thus be wary of

assuming that each individual possesses whatever may be implied by the aggregate data. The history of exper-

imental psychology contains many such examples of misleading aggregate data (see, for example, Estes, 1956;

Maddox, 1999; and Siegler, 1987).

Our investigation of the k-sample hypothesis asks two distinct but related questions. First, how small can k

be and still obtain predictions of comparable accuracy to the G&TBayesian model? Second, can the computa-

tion of the G&T Bayesian model—even with the veridical prior distribution replaced by a noisy sample-based

prior distribution—be simplified by some heuristic algorithm? To anticipate our results, we find that a heuristic

algorithm with k = 2 obtains fits as good as if not better than G&T-Bayesian. This result suggests a different

perspective on everyday reasoning than the G&T-Bayesian model implies.

3.1 The minimum-of-k-samples model

We now elaborate the k-sample hypothesis into a simple heuristic model, which we refer to as the minimum-of-k-

samples model, or Mink. Like the G&T Bayesian model, Mink predicts a quantity ttotal given a value of the query

point, tcur, for some domain. The model may not have the theoretical elegance of the G&T Bayesian model, but it

is intuitive and directly maps to cognitive mechanisms.

Given a query, Mink posits that an individual first retrieves a sample of k instances from memory. The model

is neutral as to whether memory retrieval is implicit or explicit. Of the retrieved samples, only those with values

at least as large as tcur are relevant to the query. (If the query specifies a movie has already grossed $20M, then

any movie known to gross less than $20M is irrelevant because it fails to satisfy the presupposition of the query.)

Discarding the irrelevant samples, the individual reports the minimum value of the remaining samples. When

all available samples are irrelevant to the query, the individual ventures a guess that is proportional to the query

point, tcur. (For example, if the query concerns the total baking duration of a cake that has been in the oven for 60
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minutes, the individual might simply guess 25% above the current baking time, or 75 minutes.)

Formally, Mink operates as follows:

1. A set of k samples, S = s1,s2, . . .sk, is drawn from the prior distribution of the domain.

2. Irrelevant samples are discarded, forming a new set S′ = {si|si ≥ tcur}.

3. If |S′|> 0, the model’s prediction is mini s′i.

4. If |S′|= 0, the model’s prediction is a proportion g larger than the query, i.e., (1+g)tcur.

We wish to emphasize that Mink does not require any individual to internalize the veridical prior. Only nature

needs to know the prior in order to serve up k samples to any individual.

3.2 The G&T k-samples model

In addition to the heuristic Mink model, we also explored two variants of the G&T Bayesian model that utilize

only k samples. Rather than utilizing the veridical prior distribution, these variants base the prior solely on the k

samples. In the first variant, which we refer to as GTkGuess, the prior is defined to have probability mass

P̂(ttotal) =
1
k

k

∑
i=1

δsi,ttotal , (2)

where δ.,. is the Kronecker delta. Just as Mink needed to handle the situation in which the available samples are

irrelevant to the query, so must GTkGuess, because the posterior is undefined in this situation and cannot serve

as the basis for a response. One solution—as the ’guess’ in GTkGuess implies—is to make the same assumption

that Mink does: individuals formulate a guess that is a fixed proportion g above the query point. The formal

definition of GTkGuess is therefore identical to Mink, with the min function in step 3 of the algorithm replaced

by the median of the posterior (Equation 1), computed using the sample prior (Equation 2).

The second variant of the G&T Bayesian model we propose, which we refer to as GTkSmooth, solves the

undefined-posterior problem in perhaps a more principled manner than GTkGuess, and in a manner more in the

spirit of probabilistic approaches. GTkSmooth assumes that individuals treat the samples not as single observa-

tions, but as representative of a distribution of cases, e.g., a Gaussian distribution centered on the sample, truncated
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at zero. That is, the prior distribution is a smoothed version of that used in GTkGuess:

P̂(ttotal) ∝

 ∑
k
i=1 exp

(
(ttotal−si)2

2σ2

)
for ttotal ∈ N

0 otherwise.
(3)

Because the prior has nonzero probability mass for all ttotal ∈ N, the posterior can be determined regardless of

whether the sample values are larger than tcur. Although this blurring of the samples is a more elegant assumption

than the g guessing factor, it nonetheless also involves one free parameter, σ.

4 Methodology

Griffiths and Tenenbaum (2006) reported results from eight domains: cake baking times (in minutes), terms of

U.S. representatives (in years), lifespans (in years), movie grosses (in hundreds of million dollars), pharaoh reigns

(in years), poem lengths (in lines), movie run times (in minutes), and waiting times (in minutes).

For each domain, G&T collected data from over 125 participants: 126 participants for cakes, 130 for U.S.

representatives, 197 for lifespans, 174 for movie grosses, 191 for pharaoh reigns, 197 for poems, 136 for movie

run times, and 158 for waiting times. Each participant was queried with one of five values of tcur for a domain;

for example, the query values for cake baking times were 10, 20, 35, 50, or 70 minutes.

To obtain predictions from our three models—Mink, GTkGuess, and GTkSmooth—we simulated the same

number of participants for each query as G&T tested. The procedure for obtaining a prediction from each simu-

lated participant is presented above. Tom Griffiths provided us with the empirical prior distributions from six of

the domains, obtained from sources on the world-wide web (see Griffiths & Tenenbaum, 2006). For the other two

domains—wait times and pharaohs—G&T did not use an empirical prior, but instead used hypothetical priors—a

power-law distribution for wait times and an Erlang distribution for pharaohs. Each of these distributions had one

free parameter that G&T fit to the human data. (The Erlang has two free parameters, but one was constrained

such that the mean of the distribution matched participants’ estimate of the average reign of pharaohs.) Although

we could legitimately have set these parameters to obtain the best fit to our model, we instead used the same pa-

rameters as G&T. Each of our models had one free parameter: g for Mink and GTkGuess, and σ for GTkSmooth.

We coarsely tuned the free parameters by hand to obtain the best performance, which yielded the multiplicative
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guessing factor g = 0.30 and the prior-smoothing parameter σ = 10.

5 Results

5.1 Mink versus G&T-Bayesian

G&T summarized the outcome of each experiment via the median response of the participants to each query. We

did the same for Mink with k = 2, i.e., Min2, yielding a single prediction from the model for each simulation

experiment. We performed 100 replications of the simulation experiment, and obtained the mean and standard

deviation over replications of the simulation experiment.

Fig. 1a-h shows predictions for the eight domains studied by Griffiths and Tenenbaum (2006). Each graph

includes the median predictions of human participants in the G&T experiments (blue squares), predictions from

the G&T-Bayesian model (red dashed lines), and predictions from Min2 g = 0.3 (solid green lines). The error

bars on the human data and on Min2 will be discussed shortly.

———————————————–

INSERT FIGURE 1 ABOUT HERE

———————————————–

To quantify the goodness of fit of each model to the data, we computed the normalized root mean squared

error (NRMSE) between the models and the data at the query points, defined as

NRMSE =

(
∑

Q
q=1(hq−mq)2

∑
Q
q=1(hq− h̄)2

)1/2

, (4)

where hq and mq are the human data and model prediction for query q, and h̄ is the mean human response across

queries. The second and third columns of Table 1 show the NRMSE for G&T-Bayesian and Min2 for each of

the eight domains. All simulations use g = 0.3, except for the score in parentheses for the lifespan simulation,

which we discuss shortly. The Min2 scores that outperform G&T-Bayesian are highlighted in boldface font. By

the NRMSE measure, Min2 achieves a better fit on five of the eight domains.

The fourth and fifth columns of Table 1 show a different measure of fit for the two models: the mean normal-
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ized deviation (MND), which indicates the deviation of the model from the data relative to the uncertainty in the

data:

MND =
1
Q

Q

∑
q=1

|hq−mq|
sq

, (5)

where si is a bootstrap estimate of the standard deviation in the outcome of the human experiment (see below for

details). The MND places less weight on the less reliable data points. The MND measure yields essentially the

same result as the NRMSE: Min2 outperforms G&T-Bayesian on six of the eight domains.

———————————————–

INSERT TABLE 1 ABOUT HERE

———————————————–

Let’s examine where Min2 fails. Although the pharaoh-reigns NRMSE is higher for Min2 than G&T-Bayesian,

it is difficult to see a qualitative difference in performance between the models (Fig. 1g). G&T-Bayesian does

come closer than Min2 to human data for query points tcur = 1,7,11, but as the error bars suggest, these are the

least reliable data. (More on the error bars shortly.) Moreover, the predictions of G&T-Bayesian for this particular

data set were based not on a veridical prior distribution, but on a hypothetical prior distribution constructed by

G&T. G&T found that their model produced a poor fit to the data using the veridical prior. Consequently, G&T

assumed that participants did not have much knowledge of pharaoh reigns beyond the general shape and mean of

the distribution. G&T therefore elected to use an Erlang distribution with one free parameter to fit the data. (The

Erlang has two free parameters, but one was constrained by the mean reign.) We did not tune the parameter for

fits with Min2. Therefore, G&T-Bayesian had an additional degree of freedom that Min2 did not.

For the movie run times (Fig. 1f), G&T-Bayesian is a bit closer on query points tcur = 60,80—although both

models significantly underpredict the data—and Min2 is a bit closer on query points tcur = 30,110. As the MND

measure suggests, when the unreliability of the data is taken into account, performance of the two models is

comparable.

The third domain for which Min2 underperformed G&T-Bayesian was lifespans. As Fig. 1h makes evident,

the poor fit of Min2 stems from the rightmost query point, tcur = 96. For tcur = 96, Min2 is unlikely to sample an

individual who lived beyond this age; consequently, the model will guess using the g factor, which will produce

a prediction of 124.8 years for the lifespan. Certainly participants in the G&T experiment are aware that people
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rarely live to this age, and as a result might lower their guess. Because g has a significant effect on only the final

query point, we might lower g for this domain to reflect general knowledge about lifespans. Reducing g by a

factor of ten, Min2 outperforms G&T-Bayesian, shown in Fig. 1i and quantified by NRMSE and MND (numbers

in parentheses in Table 1).

We again emphasize that Min2 outperforms G&T-Bayesian on five of the eight domains. We discussed the

three remaining domains in detail to convince the reader that Min2 shows no pathological deficiency. Our aim

is not to argue than Min2 is superior to G&T-Bayesian, but only that a preference for one model or the other

cannot be justified on the grounds of data fit. In fairness, we note that Min2 has a free parameter, g. Although this

free parameter was chosen to fit the human data, it has a relatively weak effect on the model’s predictions, and

its effect is primarily seen for the rightmost query point of each graph, where the set of samples drawn beyond

the query point is most likely to be empty. We also had freedom in choosing how g influences the prediction.

Although g might have been an additive constant, a multiplicative constant makes the most sense given that

we wanted to allow only one free parameter for all eight domains, the currency of the domains vary, and a

multiplicative constant is scale invariant, whereas an additive constant is not. Although the free parameter does

make a comparison between G&T-Bayesian and Min2 challenging, we will show in the next two sections that (1)

the need for the free parameter is due to the fact that the Min2 is sample based, and not the fact that Min2 lacks

the theoretical foundation of G&T-Bayesian; (2) Min2, as well as other sample based models, is able to explain

aspects of the data that G&T-Bayesian cannot address.

5.2 Comparing sample-based models

In the previous section, we illustrated that Min2, a model based on a very small sample size, provides as good

an account of individuals’ everyday predictions as the G&T-Bayesian model. Min2 serves as a proof of the

sufficiency of 2 samples to explain the data.

In this section, we argue for the robustness of the result obtained with Min2 by exploring three small-sample

models—Mink, GTkGuess, and GTkSmooth—for sample sizes k ranging from 1 to 5, and showing that many

models based on small sample sizes are adequate to explain the data. The simulation results we report here are

for a single simulation experiment with 10,000 simulated participants for each model, a large enough population

to ensure the reliability of the median response, and therefore the estimate of NRMSE.
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———————————————–

INSERT FIGURE 2 ABOUT HERE

———————————————–

Fig. 2 contains one bar graph for each of the eight domains, and a final bar graph for lifespans with g = .03,

as in Fig. 1). The ordinate of each graph is the model NRMSE. The horizontal dashed line shows the NRMSE for

G&T-Bayesian. The bars show NRMSE for the three sample-based models as a function of k. Let’s first consider

the domains in Fig. 2a-e. In all of these domains, GTkSmooth performs poorly relative to the other models.

However, Mink and GTkGuess all match or beat the performance of G&T-Bayesian for all values of k, except

perhaps for the poem domain and k = 1. Now consider the final three domains, in Fig. 2f-h. In these domains,

GTkSmooth performs well for all k > 1. Mink and GTkGuess perform well for certain values of k in Fig. 2f,g,

although GTkGuess seems more robust than Mink as a function of k. For Fig. 2h, the lifespan simulation, neither

Mink nor GTkGuess perform well, unless the guessing constant g is lowered (Fig. 2i).

Overall, we see that GTkSmooth, the most principled Bayesian sample-based approach, is least convincing

in its performance. Mink does well for at small k, but in some domains, the fit worsens as k increases. This

result is due to the fact that the model’s predictions drop to the query point as k increases. Nonetheless, Mink was

proposed for situations where k is likely to be small.

GTkGuess can be viewed as a hybrid of Mink and G&T-Bayesian. For k = 1,2, GTkGuess yields exactly the

same predictions as Mink. As k → ∞, GTkGuess approaches G&T-Bayesian because the sampling and guessing

assumptions of GTkGuess become irrelevant. Thus, it is not surprising that GTkGuess is quite robust over values

of k. We therefore view GTkGuess not as a competitor to Mink, but rather as a general description of a class of

models that is equivalent to Mink for small k—the focus of our discussion.

5.3 Individual variability

We have argued for the plausibility of Mink but the results thus far do not allow us to distinguish between: (a) the

view espoused by Mink that each individual reasons based on a few samples, and accuracy arises by combining

predictions over individuals, and (b) the view espoused by G&T-Bayesian that each individual holds a veridical

prior distribution in his/her mind, or (c) some intermediate state of affairs.

The key empirical distinction that arises between these perspectives is in the variability of individual re-

11



sponses. If each individual reasons from a small number of samples, and the samples available to one individual

are independent of the samples available to another individual, responses will be highly variable. As sample size

grows, the sample statistics of two individuals will become more similar, and response variability will drop. Thus,

the response variability of human participants can be used to infer the sample size on which reasoning is based.

(If we are incorrect in our assumption concerning the independence of samples available to two individuals, vari-

ability will be low and not diagnostic of k. Fortunately, it turns out that observed variability is high, as we will

show.)

G&T report one measure of variability: a bootstrap estimate of inter-experiment variance. This estimate

indicates the variability one would expect if the entire experiment were replicated many times. Replicating the

experiment involves obtaining data from 125+ participants, and then computing the median predictions. The

human data in Fig. 1 includes error bars that denote ±2 standard deviations on the inter-experiment distribution,

as G&T estimated by a 1,000-sample bootstrap. We also estimated inter-experiment variance with Min2, and

the Min2 predictions at the query points are shown with error bars that denote ±2 standard deviations. Because

simulation studies permit an unlimited supply of simulated participants, instead of bootstrap sampling a finite set

of participants, we simply generated new participants for each of 1,000 replications of the experiment.

As the error bars clearly indicate, the variability of the human participants is at least as large as that obtained

by Mink. Thus, even though Mink produces significant inter-participant variability because each response is based

only on k samples, this variability is no larger than that observed in the G&T human studies.

A more direct measure of variability than inter-experiment variance is the inter-participant variance. Because

G&T report as a summary statistic the median participant response, not the mean, the inter-participant variance

is not equivalent to the inter-experiment variance. Nonetheless, they should be strongly related. Inter-participant

variance was not discussed by Griffiths and Tenenbaum (2006), but Tom Griffiths kindly provided us with the raw

data to compute inter-participant variance. Fig. 3 presents a measure of the inter-participant variability in human

responses relative to the inter-participant variability of model responses for domain d,

V (d) =
1
Q

Q

∑
q=1

log10
vh(d,q)
vm(d,q)

, (6)

where vh(d,q) is the inter-participant variance for domain d and query point q from the human experiment,
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vm(d,q) is the same measure from the model, and Q is the total number of query points (5 in these experiments).

If the human variability matches the simulation variability, V (d) will be zero; if individuals are more variable

than the simulation predicts for a given k, the value will be positive.

———————————————–

INSERT FIGURE 3 ABOUT HERE

———————————————–

Mink, GTkGuess, and GTkSmooth all show the same pattern: the models produce less variability as k in-

creases, just as one would expect. What is surprising is that for k > 1, V (d) > 0, i.e., all models show less

variability than the human subjects. This result provides strong evidence that human participants do not rely on a

large number of cases in making everyday predictions. If participants relied on, say, k = 20 cases, then according

to the three models, the inter-participant variance would be far smaller than is actually observed. What might

be problematic for the sample-based models is the fact that human participants show more variability than the

models for k as small as 1 or 2. We have two explanations for this finding. First, when the models formulate a

guess based on the g factor, the resulting variability will be small, and it might be more realistic to treat g not as a

constant but a random variable, which will increase the variability of the model’s predictions. Second, eyeballing

the human data, participants clearly seem to be rounding their predictions in a domain-appropriate manner. For

example, for cake baking times, waiting times, and movie run times, most reported times on the 15 or 30 minute

marks. It is easy enough to justify the introduction of additional noise sources to the models to raise their response

variability to the level of human participants. However, had we obtained the result that the models with small k

yielded far more variability than the participants, we would have been forced to admit the failure of the models,

and consequently, reject the small-sample hypothesis.

6 Discussion

When the Griffiths and Tenenbaum (2006) paper first appeared, its conclusion that everyday reasoning can be

cast as optimal (Bayesian) inference seemed astonishing and radical to many who learned of the work. Beyond

surprise, many were swayed by the elegance of the work. The research also had an impact outside the academic

community. Consider the following quote, from The Economist:
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“[Griffiths and Tenenbaum]...put the idea of a Bayesian brain to a quotidian test. They found that it

passes with flying colors.

The key to successful Bayesian reasoning is ... in having an appropriate prior, as it is known to the

cognoscenti. This prior is an assumption about the way the world works—in essence, a hypothesis

about reality—that can be expressed as a mathematical probability distribution of the frequency with

which events of a particular magnitude happen...

With the correct prior, even a single piece of data can be used to make meaningful Bayesian predic-

tions.

Indeed, one of the most impressive things Dr Griffiths and Dr Tenenbaum have shown is the range

of distributions the mind can cope with. Besides Erlang, they tested people with examples of normal

distributions, power-law distributions and, in the case of baking cakes, a complex and irregular distri-

bution. They found that people could cope equally well with all of them, cakes included. Indeed, they

are so confident of their method that they think it could be reversed in those cases where the shape of

a distribution in the real world is still a matter of debate.” (The Economist, 1/5/2006)

The message transmitted by G&T’s work is that individual minds encode complex prior distributions in do-

mains casually encountered in daily life, and that individual minds are Bayesian and utilize these prior distribu-

tions to draw complex inferences. In contrast, the present article shows that the results are quite consistent with a

far less dramatic possibility: individual minds may reason from only a small number of instances—one, two, or

three—and that the mechanisms of reasoning may be simple heuristic algorithms.

How can these two perspectives—embodied in the G&T Bayesian and Mink models—both be consistent with

the data? One answer lies in the wisdom of crowds. Even if any one individual has very limited knowledge and

inference capabilities, combining estimates over a population allows the population to be well characterized from

a Bayesian perspective.

6.1 Levels of analysis

A proponent of Bayesian approaches may argue that G&T-Bayesian is something like what linguists have referred

to as a competence theory, whereas Mink is a performance theory. That is, Mink is a mechanistic approximation
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of the G&T-Bayesian theory. Alternatively, one might cast the two theories as being at different levels of analysis

in the Marr sense: G&T-Bayesian is a computational level theory, whereas Mink is an algorithmic level theory.

Mink and G&T-Bayesian are similar, in some sense: the predictions of the two models for a large-population

average are similar (Fig. 1).

Moreover, there is some non-accidental correspondence between Mink and G&T-Bayesian. Mink utilizes

the heuristic of reporting the minimum value of the k samples recalled. This heuristic might be viewed as an

approximation to the Bayesian size principle, which biases the posterior distribution to smaller hypotheses. The

Mink approximation is best for small k, and small k seem to obtain the best fits to human data (Figs. 2 and 3).

If our investigations had found that Mink or some other sample-based model required, say, k = 20 samples per

individual to match the data, we would not have considered the sampling account to be a qualitatively different

story than the G&T-Bayesian account. However, when k = 2 samples per individual accounts for the data, our

sense is that the Mink and G&T-Bayesian accounts have to be viewed as qualitatively distinct. Certainly, the sort

of interpretation described in the Economist article quoted above would not be consistent with Mink.

One point that a competence-performance or levels-of-analysis distinction makes is that the Bayesian formal-

ism is sufficiently broad that nearly any heuristic or mechanistic account can be cast in Bayesian terms, given the

right set of assumptions. While there is no doubt that is often very illuminating to view human reasoning from

a Bayesian perspective, an overemphasis on the ways in which reasoning conforms to Bayesian principles may

draw attention away from important psychological distinctions, and may obscure important processing limitations

of human reasoning.
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Figure 1: (a)-(h) Human and simulation results on eight everyday prediction tasks. The blue squares indicate median
human responses from the experiments of Griffiths and Tenenbaum (2006). The G&T Bayesian-model prediction
is indicated by the dashed red line. The Min2 prediction, with g = 0.3, is indicated by the solid green line. The
error bars surrounding the human data and the Min2 predictions at the query points denote ±2 standard deviations in
experimental outcome. The error bars for the human data were obtained by G&T via bootstrap sampling; the error
bars for Min2 were obtained via 100 replications of the simulation experiment. (i) The lifespan simulation with
g = 0.03. 17
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Figure 2: (a)-(h) NRMSE evaluation of Mink, GTkGuess, and GTkSmooth for k = 1 . . .5 on eight domains. Mink
and GTkGuess scores are based on g = 0.30, and GTkSmooth scores are based on σ = 10. (i) NRMSE evaluation of
the Lifespans data set with g = 0.03 for Mink and GTkGuess.
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Figure 3: Inter-participant variance of humans relative to inter-participant variance of simulation models (see Equa-
tion 6), for eight domains and three models—-Mink (solid lines), GTkGuess (dashed lines), and GTkSmooth (dotted
lines)—as a function of k. An ordinate value of zero corresponds to equal variance of humans and simulation; the
larger the value, the greater the variance of humans relative to the simulation.
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Table 1: Comparison of G&T-Bayesian and Min2

NRMSE MND
Domain G&T-Bayesian Min2 G&T-Bayesian Min2
Cake Baking 0.38 0.17 1.79 1.13
Congressional Terms 0.20 0.16 1.64 1.10
Movie Grosses 0.20 0.17 2.12 1.83
Waiting Times 0.08 0.05 0.52 0.25
Poem Lengths 0.15 0.13 1.20 0.94
Movie Run Times 1.06 1.21 1.73 1.69
Pharaoh Reigns 0.33 0.45 0.47 0.74
Lifespans 0.26 1.26 (0.20) 2.39 4.71 (1.26)
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