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Where Do New Ideas Come From? 
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Scientifi c inquiry can be viewed as “an ocean, continuous everywhere and without a break or 
division,” in Leibniz’s words (1690/1951, p. 73). Hans Reichenbach nonetheless divided this 
ocean into two great seas, the context of discovery and the context of justifi cation. Philosophers, 
logicians, and mathematicians claimed justifi cation as a part of their territory and dismissed the 
context of discovery as none of their business, or even as “irrelevant to the logical analysis of sci-
entifi c knowledge” (Popper, 1935/1959, p. 31). Their sun shines over one part of the ocean and 
has enlightened us on matters of justifi cation, but the other part of the ocean still remains in a 
mystical darkness where imagination and intuition reigns, or so it is claimed. Popper, Braithwaite, 
and others ceded the dark part of the ocean to psychology and, perhaps, sociology; but few psy-
chologists have fi shed in these waters. Most did not dare or care.

In this article, I will argue that discovery can be understood by heuristics (not a logic) of dis-
covery. I will propose a heuristic of discovery that makes use of methods of justifi cation, thereby 
attempting to bridge the artifi cial distinction between the two. Furthermore, I will attempt to 
demonstrate that this discovery heuristic may not only be of interest for an a posteriori under-
standing of theory development, but also be useful for understanding limitations of present-day 
theories and research programs and for the further development of alternatives and new possi-
bilities. The discovery heuristic that I call the “tools-to-theories” heuristic (see Gigerenzer, 1991, 
2000) postulates a close connection between the shining and the dark part of Leibniz’s ocean: 
scientists’ tools for justifi cation provide the metaphors and concepts for their theories.

The power of tools to shape, or even to become, theoretical concepts is an issue largely ignored 
in both the history and philosophy of science. Inductivist accounts of discovery, from Bacon to 
Reichenbach and the Vienna School, focus on the role of data, but do not consider how the data 
are generated or processed. Nor do the numerous anecdotes about discoveries, such as Newton 
watching an apple fall in his mother’s orchard while pondering the mystery of gravitation,  Galton 
taking shelter from a rainstorm during a country outing when discovering correlation and re-
gression toward mediocrity, and the stories about Fechner, Kekulé, Poincaré, and others, which 
link discovery to beds, bicycles, and bathrooms. What unites these anecdotes is the focus on the 
vivid but prosaic circumstances; they report the setting in which a discovery occurs, rather than 
analyzing the process of discovery.

1 This article is based on Gigerenzer, G. (1991). From tools to theories: A heuristics of discovery in cognitive 
psychology. Psychological Review, 98, 254–267; Gigerenzer, G., & Goldstein, D. G. (1996). Mind as 
computer: The birth of a metaphor. Creativity Research Journal, 9, 131–144; and on chapters 1 and 2 in my 
book Adaptive thinking: Rationality in the real world. Oxford University Press, 2000. For permission to reprint 
parts of these texts, I am grateful to the American Psychological Association, to Lawrence Erlbaum Associates, 
and to Oxford University Press.
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The question “Is there a logic of discovery?” and Popper’s (1935/1959) conjecture that there 
is none have misled many into assuming that the issue is whether there exists a logic of discov-
ery or only idiosyncratic personal and accidental reasons that explain the “fl ash of insight” of a 
particular scientist (Nickles, 1980). I do not think that formal logic and individual personality 
are the only alternatives, nor do I believe that either of these is a central issue for understanding 
discovery.

The process of discovery can be shown, according to my argument, to possess more struc-
ture than thunderbolt guesses but less defi nite structure than a monolithic logic of discovery, of 
the sort Hanson (1958) searched for, or a general inductive hypothesis-generation logic (e.g., 
Reichenbach, 1938). The present approach lies between these two extremes; it looks for struc-
ture beyond the insight of a genius, but does not claim that the tools-to-theories heuristic is (or 
should be) the only account of scientifi c discovery. The tools-to-theories heuristic applies neither 
to all theories in science nor to all cognitive theories; it applies to a specifi c group of cognitive 
theories developed after the so-called cognitive revolution, in the last three decades.

Nevertheless, similar heuristics have promoted discovery in physics, physiology, and other 
areas. For instance, it has been argued that once the mechanical clock became the indispensable 
tool for astronomical research, the universe itself became understood as a kind of mechanical 
clock, and God as a divine watchmaker. Lenoir (1986) shows how Faraday’s instruments for re-
cording electric currents shaped the understanding of electrophysiological processes by promot-
ing concepts such as “muscle current” and “nerve current.”

Thus, this discovery heuristic boasts some generality both within cognitive psychology and 
within science, but this generality is not unrestricted. Since there has been little research in how 
tools of justifi cation infl uence theory development, the tools-to-theories heuristic may be more 
broadly applicable than I am able to show in this article. If my view of heuristics of discovery as 
a heterogeneous bundle of search strategies is correct, however, this implies that generalizability 
is in principle bounded.

What follows has been inspired by Herbert Simon’s notion of heuristics of discovery, but goes 
beyond his attempt to model discovery with programs such as BACON that attempt to induce 
scientifi c laws from data (e.g., Langley, Simon, Bradshaw, & Zytkow, 1987). My focus is on the 
role of the tools that process and produce data, not the data themselves, in the discovery and 
acceptance of theories.

How Methods of Justifi cation Shape Theoretical Concepts

The tools-to-theories heuristic is twofold:
(1) Discovery. Scientifi c tools, once entrenched in a scientist’s daily practice, suggest new theoreti-

cal metaphors and theoretical concepts.
(2) Acceptance. Once proposed by an individual scientist (or a group), the new theoretical meta-

phors and concepts are more likely to be accepted by the scientifi c community if the mem-
bers of the community are also users of the new tools.

By tools I mean both analytical and physical methods that are used to evaluate given theories. 
Analytical tools can be either empirical or non-empirical. Examples of analytical methods of the 
empirical kind are tools for data processing such as statistics; examples of the non-empirical kind 
are normative criteria for the evaluation of hypotheses such as logical consistency. Examples of 
physical tools of justifi cation are measurement instruments such as clocks. In this article, I will 
focus on analytical rather than physical tools of justifi cation, and among these, on techniques 
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of statistical inference and hypothesis testing. My topic here will be theories of mind, and how 
social scientists discovered them after the emergence of new tools for data analysis, rather than 
of new data.

In this context, the tools-to-theories heuristic consists in the discovery of new theories by 
changing the conception of the mind through the analogy of the tool. The result can vary in 
depth from opening new general perspectives, albeit mainly metaphorical, to sharp discontinu-
ity in specifi c cognitive theories caused by the direct transfer of scientist’s tools into theories of 
mind.

This article will deal with two tools that have turned into cognitive theories: inferential sta-
tistics and the digital computer.

Cognition as Intuitive Statistics

I begin with a brief history. In American psychology, the study of cognitive processes was sup-
pressed in the early 20th century by the allied forces of operationalism and behaviorism. The 
operationalism and the inductivism of the Vienna School, inter alia, paved the way for the in-
stitutionalization of inferential statistics in American experimental psychology between 1940 
and 1955 (Gigerenzer, 1987a; Toulmin & Leary, 1985). In experimental psychology, inferential 
statistics became almost synonymous with scientifi c method. Inferential statistics, in turn, pro-
vided a large part of the new concepts of mental processes that have fueled the so-called cognitive 
revolution since the 1960s. Theories of cognition were cleansed of terms such as restructuring 
and insight, and the new mind came to be portrayed as drawing random samples from nervous 
fi bers, computing probabilities, calculating analyses of variance, setting decision criteria, and 
performing utility analyses.

After the institutionalization of inferential statistics, a broad range of cognitive pro-
cesses—conscious and unconscious, elementary and complex—were reinterpreted as involving 
 “intuitive statistics.” For instance, W. P. Tanner and his coworkers assumed in their theory of 
signal detectability that the mind “decides” whether there is a stimulus or only noise, just as a 
statistician of the Neyman-Pearson school decides between two hypotheses (Tanner & Swets, 
1954). In his causal attribution theory, Harold H. Kelley (1967) postulated that the mind at-
tributes a cause to an effect in the same way as behavioral scientists have come to do, namely, 
by performing an analysis of variance and testing null hypotheses. These two infl uential theories 
show the breadth of the new conception of the “mind as an intuitive statistician” (Gigerenzer, 
2000; Gigerenzer & Murray, 1987). They also exemplify cognitive theories that were suggested 
not by new data, but by new tools of data analysis.

In what the following, I shall give evidence for three points. First, the discovery of theories based 
on the conception of the mind as an intuitive statistician caused discontinuity in theory rather than 
being merely a new, fashionable language: it radically changed the kind of pheno mena reported, the 
kinds of explanations looked for, and even the kinds of data that were generated. This fi rst point il-
lustrates the profound power of the tools-to-theories heuristic to generate quite innovative theories. 
Second, I will provide evidence for the “blindness” or inability of researchers to discover and accept 
the conception of the mind as an intuitive statistician before they became familiar with inferential 
statistics as part of their daily routine. The discontinuity in cognitive theory is closely linked to 
the preceding discontinuity in method, that is, to the institutionalization of inferential statistics in 
psychology. Third, I will show how the tools-to-theories heuristic can help us to see the limits and 
possibilities of current cognitive theories that investigate the mind as an “intuitive statistician.”
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Discontinuity in Cognitive Theory Development

What has been called the “cognitive revolution” (Gardner, 1985) is more than the overthrow of 
behaviorism by mentalist concepts. The latter have been a continuous part of scientifi c psychol-
ogy since its emergence in the late 19th century, even coexisting with American behaviorism 
during its heyday (Lovie, 1983). The cognitive revolution did more than revive the mental; it has 
changed our concepts of what the mental means, often dramatically. One source of this change 
is the tools-to-theories heuristic, with its new analogy of the mind as an intuitive statistician. To 
show the discontinuity within cognitive theories, I will briefl y discuss two areas in which an en-
tire statistical technique, not only a few statistical concepts, became a model of mental processes: 
stimulus detection and discrimination, and causal attribution.

What intensity must a 440-Hz tone have to be perceived? How much heavier than a stan-
dard stimulus of 100 gms must a comparison stimulus be, in order for a perceiver to notice a 
difference? How can the elementary cognitive processes involved in those tasks, known today as 
“stimulus detection” and “stimulus discrimination” be understood? Since Herbart (1816), such 
processes have been explained by using a threshold metaphor: detection occurs only if the effect 
an object has on our nervous system exceeds an absolute threshold, and discrimination between 
two objects occurs if the excitation from one exceeds that from the other by an amount greater 
than a differential threshold. E. H. Weber and G. T. Fechner’s laws refer to the concept of fi xed 
thresholds; Titchener (1896) saw in differential thresholds the long sought-after elements of 
mind (he counted approximately 44,000); and classic textbooks such as Brown and Thomson’s 
(1921) and Guilford’s (1954) document methods and research.

Around 1955, the psychophysics of absolute and differential thresholds was revolutionized 
by the new analogy between the mind and the statistician. W. P. Tanner and others proposed a 
“theory of signal detectability” (TSD), which assumes that the Neyman-Pearson technique of 
hypothesis testing describes the processes involved in detection and discrimination. Recall that 
in Neyman-Pearson statistics, two sampling distributions (hypotheses H0 and Hl) and a decision 
criterion (which is a likelihood ratio) are defi ned, and then the data observed are transformed 
into a likelihood ratio and compared with the decision criterion. Depending on which side of the 
criterion the data fall, the decision to “reject H0 and accept HI” or “accept H0 and reject HI” is 
made. In straight analogy, TSD assumes that the mind calculates two sampling distributions for 
“noise” and “signal plus noise” (in the detection situation) and sets a decision criterion after weigh-
ing the cost of the two possible decision errors (Type I and Type II errors in Neyman- Pearson 
theory, now called “false alarms” and “misses”). The sensory input is transduced into a form that 
allows the brain to calculate its likelihood ratio, and depending on whether this ratio is smaller or 
larger than the criterion, the subject says: “no, there is no signal” or “yes, there is a signal.” Tanner 
(1965) explicitly referred to his new model of the mind as a “Neyman-Pearson detector,” and in 
unpublished work, his fl ow charts included a drawing of a homunculus statistician performing the 
unconscious statistics in the brain (Gigerenzer & Murray, 1987, pp. 43–53).

The new analogy between mind and statistician replaced the century-old concept of a fi xed 
threshold by the twin notions of observer’s attitudes and observer’s sensitivity. Just as Neyman-
Pearson technique distinguishes between a subjective part (e.g., selection of a criterion dependent 
on cost-benefi t considerations) and a mathematical part, detection and discrimination became 
understood as involving both subjective processes, such as attitudes and cost-benefi t consid-
erations, and sensory processes. Swets, Tanner, and Birdsall (1964, p. 52) considered this link 
between attitudes and sensory processes to be the “main thrust” of their theory. The analogy be-
tween technique and mind made new research questions thinkable, such as “How can the mind’s 
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decision criterion be manipulated?” A new kind of data even emerged: two types of errors were 
generated in the experiments, false alarms and misses, just as the statistical theory distinguishes 
two types of error.

As far as I can tell, the idea of generating these two kinds of data (errors) was not common 
before. The discovery of TSD was not motivated by new data; rather, the new theory motivated 
a new kind of data. In fact, in their seminal paper, Tanner and Swets (1954, p. 401) explicitly 
admit that their theory “appears to be inconsistent with the large quantity of existing data on this 
subject,” and proceed to criticize the “form of these data.”

The Neyman-Pearsonian technique of hypothesis testing was subsequently transformed into 
a theory of a broad range of cognitive processes, ranging from recognition in memory (e.g., 
 Murdock, 1982; Wickelgreen & Norman, 1966) to eyewitness testimony (e.g., Birnbaum, 1983) 
to discrimination between random and nonrandom patterns (e.g., Lopes, 1982).

My second example concerns theories of causal reasoning. In Europe, Albert Michotte 
(1946/1963), Jean Piaget (1930), the Gestalt psychologists, and others had investigated how 
certain temporal spatial relationships between two or more visual objects, such as moving dots, 
produced phenomenal causality. For instance, the subjects were made to “perceive” that one dot 
launches, pushes, or chases another. After the institutionalization of inferential statistics, Harold 
H. Kelley (1967) proposed in his “attribution theory” that the long-sought laws of causal reason-
ing are, in fact, the tools of the behavioral scientist: R. A. Fisher’s analysis of variance (ANOVA). 
Just as the experimenter has come to infer a causal relationship between two variables by calcu-
lating an analysis of variance and performing an F-test, the man-in-the-street infers the cause 
of an effect by unconsciously making the same calculations. By the time Kelley discovered the 
new metaphor for causal inference, about 70% of all experimental articles already used ANOVA 
(Edgington, 1974).

The theory was quickly accepted in social psychology; Kelley and Michaela (1980) reported 
more than 900 references in one decade. The vision of the Fisherian mind radically changed 
the understanding of causal reasoning, the problems posed to the subjects, and the explanations 
looked for. I list a few discontinuities that reveal the fi ngerprints of the tool.

(1) ANOVA needs repetitions or numbers as data in order to estimate variances and co-
variances. Consequently, the information presented to the subjects in studies of causal attribu-
tion consists of information about the frequency of events (e.g., McArthur, 1972), which played 
no role in either Michotte’s or Piaget’s work.

(2) Whereas Michotte’s work still refl ects the broad Aristotelian conception of four causes 
(see Gavin, 1972), and Piaget (1930) distinguished 17 kinds of causality in children’s minds, 
the Fisherian mind concentrates on the one kind for which ANOVA is used as a tool (similar to 
Aristotle’s “material cause”).

(3) In Michotte’s view, causal perception is direct and spontaneous and needs no inference, 
as a consequence of largely innate laws that determine the organization of the perceptual fi eld. 
ANOVA, in contrast, is used in psychology as a technique for inductive inferences from data 
to hypotheses, and the focus in Kelley’s attribution theory is consequently on the data-driven, 
inductive side of causal perception.

The latter point illustrates that the specifi c use of a tool, that is, its practical context rather 
than its mathematical structure, can also shape theoretical conceptions of mind. To elaborate on 
this point, let us assume that Harold Kelley had lived one and a half centuries earlier. In the early 
19th century, signifi cance tests (similar to those in ANOVA) were already being used by astrono-
mers (Swijtink, 1987). However, they used their tests to reject data, so-called outliers, and not to 
reject hypotheses. At least provisionally, the astronomers assumed that the theory was correct and 
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mistrusted the data, whereas the ANOVA mind, following the current statistical textbooks, as-
sumes the data to be correct and mistrusts the theories. So, to our 19th-century Kelley, the mind’s 
causal attribution would have seemed expectation-driven rather than data-driven: the statistician 
homunculus in the mind would have tested the data and not the hypothesis.

These two areas—detection and discrimination, and causal reasoning—may be suffi cient to 
illustrate some of the fundamental innovations in the explanatory framework, in the research 
questions posed, and in the kind of data generated. The spectrum of theories that model cog-
nition after statistical inference ranges from auditory and visual perception to recognition in 
memory, and from speech perception to thinking and reasoning (Gigerenzer & Murray, 1987; 
Gigerenzer, 1991, 1994).

To summarize: the tools-to-theories heuristic can account for the discovery and acceptance 
of a group of cognitive theories in apparently unrelated subfi elds of psychology, all sharing the 
view that cognitive processes can be modeled by statistical hypothesis testing. Among these are 
several highly innovative and infl uential theories that have radically changed our understanding 
of what “cognitive” means.

Before the Institutionalization of Inferential Statistics

There is an important test case for the present hypothesis (a) that familiarity with the statistical 
tool is crucial to the discovery of corresponding theories of mind, and (b) that the institution-
alization of the tool within a scientifi c community is crucial to the broad acceptance of those 
theories. That test case is the era prior to the institutionalization of inferential statistics. Theories 
that conceive of the mind as an intuitive statistician should have a very small likelihood of being 
discovered, and even less likelihood of being accepted. The two strongest tests are cases where (a) 
someone proposed a similar conceptual analogy, and (b) someone proposed a similar probabilis-
tic (formal) model. The chances of theories of the fi rst kind being accepted should be small, and 
the chances of a probabilistic model being interpreted as “intuitive statistics” should be similarly 
small. I know of only one case each, which I will analyze after fi rst defi ning what I mean by the 
term “institutionalization of inferential statistics.”

Statistical inference has been known for a long time, but not used as theories of mind. In 1710, 
John Arbuthnot proved the existence of God using a kind of signifi cance test; as men tioned above, 
astronomers used signifi cance tests in the 19th century; G. T. Fechner’s statistical text Kollektiv-
masslehre (1897) included tests of hypotheses; W. S. Gosset (using the pseudonym “Student”) 
published the t-test in 1908; and Fisher’s signifi cance-testing techniques, such as ANOVA, as well 
as Neyman-Pearsonian hypothesis-testing methods have been available since the 1920s (Gigeren-
zer et al., 1989). Bayes’ theorem has been known since 1763. Nonetheless, there was little interest 
in these techniques in experimental psychology before 1940 (Rucci & Tweney, 1980).

The statisticians’ conquest of new territory in psychology began in the 1940s. By 1942, 
 Maurice Kendall could comment on the statisticians’ expansion: “They have already overrun 
every branch of science with a rapidity of conquest rivaled only by Attila, Mohammed, and 
the Colorado beetle” (p. 69). By the early 1950s, half of the psychology departments in leading 
American universities offered courses on Fisherian methods and had made inferential statistics 
a graduate program requirement. By 1955, more than 80% of the experimental articles in lead-
ing journals used inferential statistics to justify conclusions from the data (Sterling, 1959), and 
editors of major journals made signifi cance testing a requirement for the acceptance of articles 
submitted (e.g., Melton, 1962).
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I shall therefore use 1955 as a rough date for the institutionalization of the tool in curricula, 
textbooks, and editorials. What became institutionalized as the logic of statistical inference was 
a mixture of ideas from two opposing camps, those of R. A. Fisher, on the one hand, and Jerzy 
Neyman and Egon S. Pearson (the son of Karl Pearson) on the other.

Discovery and Rejection of the Analogy

The analogy between the mind and the statistician was fi rst proposed before the institutionaliza-
tion of inferential statistics, in the early 1940s, by Egon Brunswik at Berkeley (e.g., Brunswik 
1943). As Leary (1987) has shown, Brunswik’s probabilistic functionalism was based on a 
very unusual blending of scientifi c traditions, including the probabilistic world view of Hans 
 Reichenbach and members of the Vienna School, and Karl Pearson’s correlational statistics.

The important point here is that in the late 1930s Brunswik changed his techniques for mea-
suring perceptual constancies, from calculating (non-statistical) “Brunswik ratios” to calculating 
Pearson correlations, such as “functional” and “ecological” validities. In the 1940s, he also began 
to think of the organism as “an intuitive statistician,” but it took him several years to spell out 
the analogy in a clear and consistent way (Gigerenzer, 1987b, 2001).

The analogy is this: the perceptual system infers its environment from uncertain cues by 
 (unconsciously) calculating correlation and regression statistics, just as the Brunswikian research-
er does when (consciously) calculating the degree of adaptation of a perceptual system to a given 
environment. Brunswik’s “intuitive statistician” was a statistician of the Karl Pearson School, 
like the Brunswikian researcher. Brunswik’s “intuitive statistician” was not well adapted to the 
psychological science of the time, however, and the analogy was poorly understood and generally 
rejected (Leary, 1987).

Brunswik’s analogy came too early to be understood and accepted by his colleagues of the 
experimental discipline; it came before the institutionalization of statistics as the indispensable 
method of scientifi c inference, and it came with the “wrong” statistical model, correlational sta-
tistics. Correlation was an indispensable method not in experimental psychology, but rather in 
its rival discipline, known as the Galton-Pearson program, or, as Lee Cronbach (1957) put it, the 
“Holy Roman Empire” of “correlational psychology.”

The schism between the two disciplines had been repeatedly taken up in presidential ad-
dresses before the APA (Dashiell, 1939; Cronbach, 1957) and had deeply affected the values 
and the mutual esteem of psychologists (Thorndike, 1954). Brunswik could not succeed in per-
suading his colleagues from the experimental discipline to consider the statistical tool of the 
competing discipline as a model of how the mind works. Ernest Hilgard (1955), in his rejection 
of Brunswik’s perspective, did not mince words: “Correlation is an instrument of the devil.” 
(p. 228)

Brunswik, who coined the metaphor of “man as intuitive statistician,” did not survive to see 
the success of his analogy. It was accepted only after statistical inference became institutionalized 
in experimental psychology, and with the new institutionalized tools rather than (Karl) Pearsonian 
statistics serving as models of mind. Only in the mid-1960s, however, did interest in  Brunswikian 
models of mind emerge (e.g., Brehmer & Joyce, 1988; Hammond & Stewart, 2001).
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Probabilistic Models Without the 
“Intuitive Statistician”

My preceding point was that the statistical tool was accepted as a plausible analogy of cognitive 
processes only after its institutionalization in experimental psychology. My second point is that 
although some probabilistic models of cognitive processes were advanced before the institu-
tionalization of inferential statistics, they were not interpreted using the metaphor of the “mind 
as intuitive statistician.” The distinction I draw here is between probabilistic models that use 
the metaphor and ones that do not. The latter kind is illustrated by models that use probabil-
ity distributions for perceptual judgment, assuming that variability is caused by lack of experi-
mental control, measurement error, or other factors that can be summarized as experimenter’s 
ignorance. Ideally, if the experimenter had complete control and knowledge (such as Laplace’s 
superintelligence), all probabilistic terms could be eliminated from the theory. This does not 
hold for a probabilistic model that is based on the metaphor. Here, the probabilistic terms model 
the ignorance of the mind rather than that of the experimenter. That is, they model how the 
 “homunculus statistician” in the brain comes to terms with a fundamental uncertain world. Even 
if the experimenter had complete knowledge, the theories would remain probabilistic, since it is 
the mind that is ignorant and needs statistics.

The key example is L. L. Thurstone, who in 1927 formulated a model for perceptual judg-
ment that was formally equivalent to the present-day theory of signal detectability (TSD). But 
neither Thurstone nor his followers recognized the possibility of interpreting the formal struc-
ture of their model in terms of the “intuitive statistician.” Like TSD, Thurstone’s model had 
two overlapping normal distributions, which represented the internal values of two stimuli and 
which specifi ed the corresponding likelihood ratios, but it never occurred to Thurstone to in-
clude the conscious activities of a statistician, such as the weighing of the costs of the two errors 
and the setting of a decision criterion, in his model. Thus neither Thurstone nor his follow-
ers took the—with hindsight—small step to develop the “law of comparative judgment” into 
TSD. When Duncan Luce (1977) reviewed Thurstone’s model 50 years later, he found it hard 
to believe that nothing in Thurstone’s writings showed the least awareness of this small, but 
crucial step. Thurstone’s perceptual model remained a mechanical, albeit probabilistic, stimulus 
response theory without a homunculus statistician in the brain. The small conceptual step was 
never taken, and TSD entered psychology by an independent route.

In summary: there are several kinds of evidence for a close link between the institutionaliza-
tion of inferential statistics in the 1950s and the subsequent broad acceptance of the metaphor 
of the mind as an intuitive statistician: (1) the general failure to accept, and even, to understand 
Brunswik’s “intuitive statistician” before the institutionalization of the tool, and (2) the case of 
Thurstone, who proposed a probabilistic model that was formally equivalent to one important 
present-day theory of “intuitive statistics,” but was never interpreted in this way; the analogy 
was not yet seen. Brunswik’s case illustrates that tools may act at two levels: fi rst, new tools may 
suggest new cognitive theories to a scientist. Second, the degree to which these tools are institu-
tionalized within the scientifi c community to which the scientist belongs can prepare (or hinder) 
the acceptance of the new theory. This close link between tools for justifi cation, on the one hand, 
and discovery and acceptance, on the other, reveals the artifi ciality of the discovery/justifi cation 
distinction. Discovery does not come fi rst, and justifi cation afterwards. Discovery is inspired by 
justifi cation.
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Heuristics of Discovery May Help in Understanding Limitations and 
Possibilities of  Current Research Programs

The preceding analysis of discovery is of interest not only for a psychology of scientifi c discovery 
and creativity (e.g., Gardner, 1988; Gruber, 1981; Tweney, Dotherty, & Mynatt, 1981), but also 
for the evaluation and further development of current cognitive theories. The general point is 
that institutionalized tools such as statistics are not theoretically inert. Rather, they come with a 
set of assumptions and interpretations that may be smuggled Trojan-horse fashion into the new 
cognitive theories and research programs. One example was mentioned above: the formal tools of 
signifi cance testing are interpreted in psychology as tools for rejecting hypotheses, assuming that 
the data are correct, whereas in other fi elds and at other times the same tools were interpreted 
as tools for rejecting data (outliers), assuming that the hypotheses were correct. The latter use of 
statistics is practically extinct in experimental psychology (although the problem of outliers rou-
tinely emerges), and therefore also absent in theories that liken cognitive processes to signifi cance 
testing. In cases like these, analysis of discovery may help to reveal “blind spots” associated with 
the tool and, as a consequence, new possibilities for cognitive theorizing.

There are several assumptions that became associated with the statistical tool in the course of 
its institutionalization in psychology, none of them being part of the mathematics or statistical 
theory proper. The fi rst assumption can be called “There is only one statistics.” Textbooks on 
statistics for psychologists (usually written by non-mathematicians) generally teach statistical in-
ference as if only one logic of inference existed. Since the 1950s and 1960s, almost all texts teach 
a mishmash of R. A. Fisher’s ideas tangled with those of Jerzy Neyman and Egon S. Pearson, but 
without acknowledgment. The fact that Fisherians and Neyman-Pearsonians could never agree 
on a logic of statistical inference is not mentioned in the textbooks, nor are the controversial is-
sues that divide them. Even alternative statistical logics for scientifi c inference are rarely discussed 
(Gigerenzer, 1993, 2001). For instance, Fisher (1955) argued that concepts such as Type II  error, 
power, the setting of a level of signifi cance before the experiment, and its interpretation as a long-
run frequency of errors in repeated experiments are concepts inappropriate for scientifi c infer-
ence—at best they could be applied to technology (his pejorative example was Stalin’s). Neyman, 
for his part, declared that some of Fisher’s signifi cance tests are “worse than useless” (since their 
power is less than their size; see Hacking, 1965, p. 99).

I know of no textbook written by psychologists for psychologists that mentions and explains 
this and other controversies about the logic of inference. Instead, readers are presented with an 
intellectually incoherent mix of Fisherian and Neyman-Pearsonian ideas, but a mix presented as 
a seamless, uncontroversial whole: the logic of scientifi c inference (for more details see Gigerenzer 
et al., 1989, chaps. 3 and 6).

This assumption that “statistics is statistics is statistics”—characteristic of the practical con-
text in which the statistical tool has been used, not of the mathematical theories—reemerges at 
the theoretical level in current cognitive psychology, just as the tools-to-theories heuristic would 
lead us to expect (Gigerenzer, 1991). For instance, research on so-called “cognitive illusions” as-
sumes that there is one, and only one, correct answer to statistical reasoning problems. As a con-
sequence, other answers are considered to refl ect reasoning fallacies, attributed to shabby mental 
software. Some of the most prominent reasoning problems, however, such as the cab problem 
(Tversky & Kahneman, 1980, p. 62), do not have only one answer; the answer depends on the 
theory of statistical inference and the assumptions applied. Birnbaum (1983), for example, shows 
that the “only correct answer” to the cab problem claimed by Tversky and Kahneman, based on 
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Bayes’ rule, is in fact only one of several reasonable answers—different ones are obtained, for 
instance, if one applies the Neyman-Pearson theory (Gigerenzer & Murray, 1987, chap. 5).

A second assumption that became associated with the tool during its institutionalization is 
“there is only one meaning of probability.” For instance, Fisher and Neyman-Pearson had differ-
ent interpretations of what a level of signifi cance means. Fisher’s was an epistemic interpretation, 
that is, that the level of signifi cance informs us about the confi dence we can have in the particular 
hypothesis under test, whereas Neyman’s was a strictly frequentist and behavioristic interpreta-
tion, which claimed that a level of signifi cance tells us nothing about a particular hypothesis, but 
about the long-run relative frequency of wrongly rejecting the null hypothesis if it is true. Al-
though the textbooks teach both Fisherian and Neyman-Pearsonian ideas, these alternative views 
of what a probability (such as level of signifi cance) could mean are generally neglected—not to 
speak of the other meanings, subjective and objective, that have been proposed for the formal 
concept of probability (Hacking, 1965).

Many of the so-called cognitive illusions were demonstrated using a subjective interpreta-
tion of probability, specifi cally, asking people about the probability they assign to a single event. 
When researchers instead began to ask people for judgments of frequencies, these apparently sta-
ble reasoning errors—the conjunction fallacy, the overconfi dence bias, for example—largely or 
completely disappeared (Gigerenzer, 1994, 2000a). Untutored intuition seems to be capable of 
making conceptual distinctions of the sort statisticians and philosophers make, such as between 
judgments of subjective probability and those of frequency (e.g., Cohen, 1986; Lopes, 1981; 
Teigen, 1983). And these results suggest that the important research questions to be investigated 
are “How are different meanings of ‘probability’ cued in every-day language?” and “How does 
this affect judgment?” rather than “How can we explain the alleged bias of ‘overconfi dence’ by 
some general defi cits in memory, cognition, or personality?”

To summarize: assumptions entrenched in the practical use of statistical tools—which are not 
part of the mathematics—can reemerge in research programs on cognition, resulting in severe 
limitations in these programs. This could be avoided by pointing out these assumptions, which, 
in turn, may even lead to new research questions (Gigerenzer, 2000).

I now extend my analysis from techniques of statistical inference to another tool, the com-
puter (Gigerenzer & Goldstein, 1996). In the fi rst part, I argue that a conceptual divorce between 
intelligence and calculation around 1800, motivated by economical transformations, made 
 mechanical computation (and ultimately the computer) conceivable. The tools-to-theories heu-
ristic comes into play in the second part, where we show how the computer, after becoming a 
standard laboratory tool in this century, was proposed, and with some delay accepted, as a model 
of mind. Thus, we travel in a full circle from mind to computer and back.

Mind as Computer
 

Act I: From Mind to Computer

The president of the Astronomical Society of London, Henry Colebrooke (1825) summed up 
the signifi cance of Charles Babbage’s (1791–1871) work: “Mr. Babbage’s invention puts an en-
gine in place of the computer.” This seems a strange statement about the man who is now praised 
for having invented the computer. But at Babbage’s time, the computer was a human being, in 
this case someone who was hired for exhaustive calculations of astronomical and navigational 
tables.
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How did Babbage ever arrive at the idea of putting a mechanical computer in place of a hu-
man one? A divorce between intelligence and calculation, as Daston (1994) has argued, made it 
possible for Babbage to conceive this idea.

In the Enlightenment, calculation was not considered a rote, mechanical thought process. 
In contrast, philosophers of the time held that intelligence and even moral sentiment were, in 
their essence, forms of calculation (Daston, 1988, 1994). Calculation was the opposite of the 
habitual and the mechanical, remote from the realm of menial labor. For Condillac, d’Alembert, 
 Condorcet, and other Enlightenment philosophers, the healthy mind worked by constantly tak-
ing apart ideas and sensations into their minimal elements, then, comparing and rearranging these 
elements into novel combinations and permutations. Thought was a combinatorial calculus, and 
great thinkers were profi cient calculators. In the eulogies of great mathematicians, for instance, 
prodigious mental reckoning was a favorite topic—Gauss’ brilliant arithmetic was perhaps the last 
of these stock legends. Calculation was the essence of moral sentiment, as well. Even self-interest 
and greed, as opposed to dangerous passions, by their nature of being calculations, were at least 
predictable and thereby thought to reinforce the orderliness of society  (Daston, 1994).

The Computer as a Factory of Workers

By the turn of the 19th century, calculation was shifting from the company of hommes éclairés 
and savants to that of the unskilled work force. Extraordinary mental arithmetic became as-
sociated with the idiot savant and the sideshow attraction. Calculation grew to be seen as dull, 
repetitive work, best performed by patient minds that lacked imagination. Women ultimately 
staffed the “bureaux de calculs” in major astronomical and statistical projects (despite being ear-
lier accused of vivid imaginations and mental restlessness, see Daston, 1992). Talent and genius 
ceased to be virtuoso combinatorics and permutations, and turned into romantic, unanalyzable 
creations. Thereby, the stage became set for the neo-romanticism in 20th century philosophy of 
science that declared creativity as mystical, and the context of discovery as “irrelevant to the logi-
cal analysis of scientifi c knowledge” (Popper, 1935/1959, p. 31).

Daston (1994) and Schaffer (1994) argue that one force in this transformation was the intro-
duction of large-scale division of labor in manufacturing, as evidenced in the automatic system 
of the English machine-tool industry and in the French government’s large-scale manufacturing 
of logarithmic and trigonometric tables for the new decimal system in the 1790s. During the 
French revolution, the engineer Gaspard Riche de Prony organized the French government’s 
titanic project for the calculation of 10,000 sine values to the unprecedented precision of 25 deci-
mal places and some 200,000 logarithms to 14 or 15 decimal places. Inspired by Adam Smith’s 
praise of the division of labor, Prony organized the project in a hierarchy of tasks. At the top 
were a handful of excellent mathematicians, including Adrien Legendre and Lazare Carnot, who 
devised the formulae; in the middle were seven or eight persons trained in analysis; and at the 
bottom were seventy or eighty unskilled persons knowing only the rudiments of arithmetic, who 
performed millions of additions and subtractions. These “manufacturing” methods, as Prony 
called them, pushed calculation away from intelligence and towards work. The terms “work” and 
“mechanical” were linked both in England and in France until the middle of the 19th century 
(Daston, 1994). Work concerned the body but not the mind; in large-scale manufacturing, each 
worker did only one task throughout his entire life.

Once it was shown that elaborate calculation could be carried out by an assemblage of un-
skilled workers, each knowing very little about the large computation, it became possible for 
Babbage to conceive of replacing these workers with machinery. Babbage’s view of the computer 
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bore a great resemblance to a factory of unskilled human workers. When Babbage talked about 
the parts of his Analytical Engine, the arithmetic computation and the storage of numbers, he 
called these the “mill” and the “store,” respectively (Babbage 1812/1994, p. 23). The metaphor 
came from the textile industry. In the textile industry, yarns were brought from the store to the 
mill where they were woven into fabric, which was then sent back to the store. In the Analyti-
cal Engine, numbers were brought from the store to the arithmetic mill for processing, and the 
results were returned to the store. Commenting on this resemblance, Lady Lovelace stated, “we 
may say most aptly that the Analytical Engine weaves algebraic patterns just as the Jaquard loom 
weaves fl owers and leaves” (Babbage 1812/1994, p. 27).2 In his chapter on the “division of mental 
labor,” Babbage explicitly refers to the French government’s program for the computation of new 
decimal tables as the inspiration and foundation of a general science of machine intelligence.

To summarize the argument: during the Enlightenment, calculation was the distinctive activity 
of the scientist and the genius, and the very essence of the mental life. New ideas and insights were 
assumed to be the product of the novel combinations and permutations of ideas and sensations. 
In the fi rst decades of the 19th century, numerical calculation was separated from the rest of intel-
ligence and demoted to one of the lowest operations of the human mind. Once calculation became 
the repetitive task of an army of unskilled workers, Babbage could envision mechanical comput-
ers replacing human computers. Pools of human computers and Babbage’s mechanical computer 
manufactured numbers in the same way as the factories of the day manufactured their goods.3

The Computer as a Brain 

Babbage once reported a dream: that all tables of logarithms could be calculated by a machine. 
However, this dream did not turn into a reality during his lifetime. He never could complete any 
of the three machines he had started to build. Modern computers, such as the ENIAC and the 
EDVAC at the University of Pennsylvania, came about during and after the Second World War. 
Did the fathers of computer science see the mind as a computer? We (Gigerenzer & Goldstein, 
1996) argued that the contemporary analogy stating that the mind is a computer was not yet 
established before the “cognitive revolution” of the 1960s. As far as we can see, there were two 
groups willing to draw a parallel between the human and the computer, but neither used the 
computer as a theory of mind. One group, which tentatively compared the nervous system to the 
computer, is represented by the Hungarian mathematician John von Neumann (1903–1957). 
The other group, which investigated the idea that machines might be capable of thought, is rep-
resented by the English mathematician and logician Alan Turing (1912–1954).

Von Neumann, known as the father of the modern computer, wrote about the possibility of 
an analogy between the computer and the human nervous system. It seems that his reading of 
a paper by Warren McCulloch and Walter Pitts called “A logical calculus of the ideas immanent 
in nervous activity” triggered his interest in information processing in the human brain soon 
after its publication in 1943 (Aspray, 1990). The paper begins with the statement that because 
of the all-or-none character of the nervous system, neural events can be represented by means 

2 The Jaquard loom was a general-purpose device which was loaded with a set of punched cards and could 
weave infi nite varieties of patterns. Factories in England were equipped with hundreds of these machines, and 
Babbage was one of the “factory tourists” of the 1830s and 1840s.

3 Calculation became dissociated from and opposed to not only the human intellect, but also moral impulse. 
Madame de Staël, for instance, used the term “calcul” only in connection with the “egoism and vanity” of 
those opportunists who exploited the French Revolution for their own advantage and selfi shness (Daston, 
1994).
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of propositional logic. The McCulloch-Pitts model did not deal with the structure of neurons, 
which were treated as “black boxes.” The model was largely concerned with the mathematical 
rules  governing the input and output of signals. In the 1945 EDVAC (the “Electronic Discrete 
Variable Computer” at the University of Pennsylvania) report, von Neumann described the com-
puter as being built from McCulloch and Pitt’s idealized neurons rather than from vacuum tubes, 
electromechanical relays, or mechanical switches. To understand the computer in terms of the 
human nervous system appeared strange to many, including the chief engineers of the ENIAC 
project, Eckert and Mauchly (Aspray, 1990, p. 173). However, von Neumann hoped that his 
theory of natural and artifi cial automata would both improve understanding of the design of 
computers and the human nervous system. His last work, for the Silliman Lectures, which owing 
to illness he could neither fi nish nor deliver, was largely concerned with pointing out similari-
ties between the nervous system and computer, the neuron and the vacuum tube—but adding 
cautionary notes on their differences (von Neumann, 1958).

What was the reception of von Neumann’s tentative analogy between the nervous system and 
the computer? His intellectual biographer, William Aspray (1990, p. 181) concludes that psy-
chologists and physiologists were less than enthusiastic about the McCulloch-Pitts model; Sey-
mor Papert spoke of “a hostile or indifferent world” (McCulloch, 1965, p. xvii) and McCulloch 
himself admitted the initial lack of interest in their work (p. 9).

The Computer as a Mind

Von Neumann and others searched for a parallel between the machine and the human on the 
level of hardware. Alan Turing (1950), in contrast, thought the observation that both the modern 
digital computer and the human nervous system are electrical was based on a “very superfi cial 
similarity” (p. 439). He pointed out that the fi rst digital computer, Babbage’s Analytical Engine, 
was purely mechanical (as opposed to electrical), and that the important similarities to the mind 
are in function rather than in hardware. Turing discussed the question of whether machines can 
think, rather than the question of whether the mind is like a computer. Thus, he was looking in 
the direction opposite to that of psychologists after the cognitive revolution and, consequently, 
he did not propose any theories of mind. For example, the famous Turing Test is about whether 
a machine can imitate a human mind, but not vice versa. Turing argued that it would be impos-
sible for a human to imitate a computer, as evidenced by human’s inability to perform complex 
numerical calculations quickly. Turing also discussed the question of whether a computer could 
be said to have a free will, a property of humans. Many years later, cognitive psychologists, under 
the assumptions that the mind is a computer and that computers lack free will, instead pondered 
the question of whether humans could be said to have one. A similar story to this is that Turing 
(1969), in a paper written in 1947 but published only years after his death, contemplated teach-
ing machines to be intelligent using the same principles used to teach children. The analogy of 
the computer as a mind was reversed again after the cognitive revolution, as McCorduck (1979) 
points out, when from Massachusetts Institute of Technology (MIT) psychologists tried to teach 
children with the very methods that had worked for computers.

Turing (1969) anticipated much of the new conceptual language and even the very problems 
Allen Newell and Herbert Simon were to attempt, as we will see in the second part of this paper. 
With amazing prophecy, Turing suggested that nearly all intellectual issues can be translated into 
the form “fi nd a number n such that …,” that is, that “search” is the key concept for problem 
solving, and that Whitehead and Russell’s (1935) Principia Mathematica might be a good start 
for demonstrating the power of the machine (McCorduck, 1979, p. 57).
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Not only did Turing’s life end early and under tragic circumstances, but his work had practi-
cally no infl uence on artifi cial intelligence in Britain until the mid-1960s (McCorduck, 1979, 
p. 68). Neither von Neumann nor his friends were persuaded to look beyond similarities between 
cells and diodes to functional similarities between humans and computers.

To summarize: two groups compared humans and computers before the cognitive revolu-
tion. One of these groups, represented by von Neumann, spoke tentatively about the computer 
as a brain, but warned about taking the analogy too far. The other group, represented by Turing, 
asked whether the computer has features of the human mind but not vice versa, that is, did not 
attempt to design theories of mind through the analogy of the tool.

Before the second half of the century, the mind was not yet a computer. However, a new 
incarnation of the Enlightenment view of intelligence as a combinatorial calculus was on the 
horizon.

Act II: From Computer to Mind

In this section, we see how a tools-to-theories explanation accounts for the new conception of 
the mind as a computer, focusing on the discovery and acceptance of Herbert Simon and Allen 
Newell’s brand of information-processing psychology. We will try to reconstruct the discovery of 
Newell and Simon’s (1972) information-processing model of mind and its (delayed) acceptance 
by the psychological community in terms of the tools-to-theories heuristic.

Discovery

Babbage’s mechanical computer was preceded by human computers. Similarly, Newell and Si-
mon’s fi rst computer program, the Logic Theorist, was also preceded by a human computer. 
Before the Logic Theorist was up and running, Newell and Simon reconstructed their com-
puter program out of human components (namely, Simon’s wife, children and several graduate 
students), to see if it would work. Newell wrote up the subroutines of the Logic Theorist (LT) 
program on index cards:

To each member of the group, we gave one of the cards, so that each person became, in effect, a component 
of the LT computer program—a subroutine—that performed some special function, or a component of its 
memory. It was the task of each participant to execute his or her subroutine, or to provide the contents of 
his or her memory, whenever called by the routine at the next level above that was then in control.
 So we were able to simulate the behavior of the LT with a computer consisting of human components 
… The actors were no more responsible than the slave boy in Plato’s Meno, but they were successful in 
proving the theorems given them. (Simon, 1991, p. 207)

The parallels to Prony’s bureaux de calculs and the large-scale manufacturing of the new factories 
of the early 19th century are striking. At essence is a division of labor, where the work is carried 
out by a hierarchy of humans—each requiring little skill, and repeating the same routine again 
and again. Complex processes are achieved by an army of workers who never see but a little piece 
of the larger picture.4

4 The Manhattan Project at Los Alamos, where the atomic bomb was constructed, housed another human 
computer. Although the project could draw on the best technology available, in the early 1940s mechanical 
calculators (such as the typewriter-sized Marchant calculator) could do nothing but addition, subtraction, 
multiplication, and, with some diffi culty, division. Richard Feynman and Nicholas Metropolis arranged a 
pool of people (mostly scientists’ wives who were getting paid three-eighths salary), each of whom repetitively 
performed a small calculation (such as cubing a number) and passed the result on to another person, who 
incorporated it into yet another computation (Gleick, 1992).
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However, between Prony’s human computer and Simon’s human computer, there is an im-
portant difference. Prony’s human computer and Babbage’s mechanical computer (which was 
modeled upon it) performed numerical calculations. Simon’s human computer did not. Simon’s 
humans matched symbols, applied rules to symbols, and searched through lists of symbols. In 
short, they performed what is now generally known as symbol manipulation.

The reader will recall from the fi rst part of this paper that the divorce between intelligence 
and numerical calculation made it possible for Babbage to replace the human computer by a 
mechanical one. In the 21st century, intelligence and calculation are still divorced. Given this 
divorce and the early conception of the computer as a fancy number cruncher, it is not surpris-
ing that the computer never suggested itself as a theory of mind. We argue that an important 
precondition for the view of mind as a computer is the realization that computers are symbol 
manipulation devices, in addition to being numerical calculators. Newell and Simon were among 
the fi rst to realize this. In the interviews with Pamela McCorduck (1979, p. 129), Allen Newell 
recalls, “I’ve never used a computer to do any numerical processing in my life.” Newell’s fi rst use 
of the computer at RAND corporation—a prehistoric card-programmed calculator hooked up 
to a line printer—was calculating and printing out symbols representing airplanes for each sweep 
of a radar antenna.

The symbol-manipulating nature of the computer was important to Simon because it cor-
responded to some of his earlier views on the nature of intelligence:

The metaphor I’d been using, of a mind as something that took some premises and ground them up 
and processed them into conclusions, began to transform itself into a notion that a mind was something 
which took some program inputs and data and had some processes which operated on the data and 
produced output. (McCorduck, 1979, p. 127)

It is interesting to note that twenty years after seeing the computer as a symbol manipulating 
device, Newell and Simon came forth with the explicit hypothesis that a physical symbol system 
is necessary and suffi cient for intelligence.

The Logic Theorist generated proofs for theorems in symbolic logic, specifi cally, the fi rst 
twenty-fi ve or so theorems in Whitehead and Russell’s (1935) Principia Mathematica. It even 
managed to fi nd a proof more elegant than the corresponding one in the Principia.

In the summer of 1958, psychology was given a double-dose of the new school of informa-
tion-processing psychology. One was the publication of the Psychological Review article “Ele-
ments of a Theory of Human Problem Solving” (Newell, Shaw & Simon, 1958). The other was 
the Research Training Institute on the Simulation of Cognitive Processes at the RAND institute, 
which we will discuss later.

The Psychological Review paper is an interesting document of the transition between the view 
that the Logic Theorist is a tool for proving theorems in logic (the artifi cial intelligence view), 
and an emerging view that the Logic Theorist is a model of human reasoning (the information 
processing view). In fact, the authors go back and forth between both views, expounding on 
the one hand that “the program of LT [Logic Theorist] was not fashioned directly as a theory 
of human behavior; it was constructed in order to get a program that would prove theorems in 
logic” (p. 154), but on the other hand that the Logic Theorist “provides an explanation for the 
processes used by humans to solve problems in symbolic logic” (p. 163). The evidence provided 
for projecting the machine into the mind is mainly rhetorical. For instance, the authors spend 
several pages arguing for the resemblance between the methods of the Logic Theorist and con-
cepts such as “set,” “insight,” and “hierarchy” described in the earlier psychological literature on 
human problem solving.
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In all fairness, despite the authors’ claim, the resemblance to these earlier concepts as they 
were used in the work of Karl Duncker, Wolfgang Köhler and others is slight. New discoveries, 
by defi nition, clash with what has come before, but it is often a useful strategy to hide the amount 
of novelty and claim historical continuity. When Tanner and Swets, four years earlier (also in the 
Psychological Review) proposed that another scientifi c tool, Neyman-Pearsonian techniques of hy-
pothesis testing, would model the cognitive processes of stimulus detection and discrimination, 
their signal detection model also clashed with earlier notions, such as the notion of a sensory 
threshold. Tanner and Swets (1954, p. 401), however, chose not to conceal this schism between 
the old and the new theories, explicitly stating that their new theory “appears to be inconsistent 
with the large quantity of existing data on this subject.” As evidenced in this paper, there is a dif-
ferent historical continuity in which Simon and Newel’s ideas stand: the earlier Enlightenment 
view of intelligence as a combinatorial calculus.

Conceptual Change

Newell et al. (1958) tried to emphasize the historical continuity of what was to become their new 
information-processing model of problem solving, as did Miller, Galanter and Pribram in their 
Plans and the Structure of Behavior (1960) when they linked their version of Newell and Simon’s 
theory to many great names such as William James, Frederic Bartlett, and Edward Tolman. We 
believe that these early claims for historical continuity served as protection: George Miller, who 
was accused by Newell and Simon as having stolen their ideas and gotten them all wrong, said 
“I had to put the scholarship into the book, so they would no longer claim that those were their 
ideas. As far as I was concerned they were old familiar ideas” (Baars, 1986, p. 213). In contrast to 
this rhetoric, we will here emphasize the discontinuity introduced by the transformation of the 
new tool into a theory of mind.

The New Mind

What was later called the “new mental chemistry” pictured the mind as a computer program:

The atoms of this mental chemistry are symbols, which are combinable into larger and more complex 
associational structures called lists and list structures. The fundamental “reactions” of the mental 
chemistry employ elementary information processes that operate upon symbols and symbol structures: 
copying symbols, storing symbols, retrieving symbols, inputting and outputting symbols, and comparing 
symbols. (Simon, 1979, p. 63)

This atomic view is certainly a major conceptual change in the views on problem solving com-
pared to the theories of Köhler, Wertheimer, and Duncker. However, it bears much resemblance 
to the combinatorial view of intelligence of the Enlightenment philosophers.5

The different physical levels of a computer lead to Newel’s cognitive hierarchy, which separates 
the knowledge-level, symbol-level, and register-transfer levels of cognition. As Arbib (1993) points 
out, the seriality of 1971-style computers is actually embedded in Newell’s cognitive theory.

5 In fact, the new view was directly inspired by the 19th-century mathematician George Boole, who, in 
the very spirit of the Enlightenment mathematicians such as the Bernoullis and Laplace, set out to derive 
the laws of logic, algebra, and probability from what he believed to be the laws of human thought (Boole 
1854/1958). Boole’s algebra culminated in Whitehead and Russell’s (1935) Principia Mathematica, describing 
the relationship between mathematics and logic, and in Claude E. Shannon’s seminal work (his master’s 
thesis at MIT in 1937), which used Boolean algebra to describe the behavior of relay and switching circuits 
(McCorduck, 1979, p. 41).
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One of the major concepts in computer programming that made its way into the new models 
of the mind is the decomposition of complexity into simpler units, such as the decomposition 
of a program into a hierarchy of simpler subroutines, or into a set of production rules. On this 
analogy, the most complex processes in psychology, such as scientifi c discovery, can be explained 
through simple subprocesses. Thus, the possibility of the logic of scientifi c discovery, the ex-
istence of which Karl Popper so vehemently disclaimed, has returned in the analogy between 
computer and mind (Langley et al., 1987).

The fi rst general statement of Newell and Simon’s new vision of mind appeared in their 
1972 book Human Problem Solving. In this book, the authors argue for the idea that higher-level 
cognition proceeds much like the behavior of a production system, a formalism from computer 
science (and before that, symbolic logic) which had never been used in psychological modeling 
before. They speak of the infl uence of programming concepts on their models:

Throughout the book we have made use of a wide range of organizational techniques known to the 
programming world: explicit fl ow control, subroutines, recursion, iteration statements, local naming, 
production systems, interpreters, and so on. …We confess to a strong premonition that the actual 
organization of human programs closely resembles the production system organization. (Newell & 
Simon, 1972, p. 803)

We will not attempt to probe the depths of how Newell and Simon’s ideas of information 
processing changed theories of mind; the commonplace usage of computer terminology in the 
cognitive psychological literature since 1972 is a refl ection of this. How natural it seems for pres-
ent-day psychologists to speak of cognition in terms of encoding, storage, retrieval, executive 
processes, algorithms, and computational cost.

New Experiments, New Data

The tools-to-theories heuristic implies that new theories need not be a consequence of new 
experiments and new data. Furthermore, new tools can transform the kinds of experiments per-
formed and data collected. I have described this consequence of the tools-to-theories heuristic 
when statistical tools turned into theories of mind.

A similar story is to be told with the conceptual change brought about by Newell and 
  Simon—it mandated a new type of experiment, which in turn involved new kinds of subjects, 
data, and justifi cation. In academic psychology of the day, the standard experimental design, 
modeled after the statistical methods of Ronald A. Fisher, involved many subjects and random-
ized treatment groups. The 1958 Psychological Review paper uses the same terminology of “design 
of the experiment” and “subject,” but radically changes their meanings. There are no longer 
groups of human or animal subjects. There is only one subject: an inanimate being named the 
Logic Theorist. There is no longer an experiment in which data are generated by either observa-
tion or measurement. Experiment takes on the meaning of simulation.

In this new kind of experiment, the data are of an unforeseen type: computer printouts of 
the program’s intermediate results. These new data, in turn, require new methods of hypothesis 
testing. How did Newell and Simon determine if their program was doing what minds do? 
There were two methods: for Newell and Simon, simulation was a form of justifi cation itself, 
that is, a theory that is coded as a working computer program shows that the processes it de-
scribes are, at the very least, suffi cient to perform the task, or, in the more succinct words of 
Simon, “A running program is the moment of truth” (1992, p. 155). Furthermore, a stronger 
test of the model was made by comparing the computer’s output to the think-aloud protocols 
of human subjects.
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Although this was all a methodological revolution in the experimental practice of the time, 
some important parallels exist between the new information-processing approach and the turn-
of-the-century German approach to studying mental processes. These parallels concern the anal-
ysis of individual subjects (rather than group means), the use of think-aloud procedures, and the 
status of the subject. In early German psychology, as well in American psychology of the time 
(until around the 1930s), the unit of analysis was the individual person, and not the average of 
a group (Danziger, 1990). The two most prominent kinds of data in early German psychology 
were reaction times and introspective reports. Introspective reports have been frowned upon ever 
since the inception of American behaviorism, but think-aloud protocols, their grandchildren, are 
back (as are reaction times).

Finally, in the tradition of the Leipzig (Wundt) and Würzburg (Külpe) schools, the sub-
ject was more prestigious and important than the experimenter. Under the assumption that the 
thought process is introspectively penetrable, the subject, not the experimenter, was assumed to 
provide the theoretical description of the thought process. In fact, the main experimental contri-
bution of Külpe, the founder of the Würzburg school, was to serve as a subject; and it was often 
the subject who published the paper. In the true spirit of these schools, Newell and Simon named 
their subject, the Logic Theorist, as a co-author of a paper submitted to the Journal of Symbolic 
Logic. Regrettably, the paper was rejected (as it contained no new results from modern logic’s 
point of view), and the Logic Theorist never tried to publish again.

Acceptance

The second dose of information processing (after the Psychological Review paper) administered 
to psychology was the Research Training Institute on the Simulation of Cognitive Processes at 
the RAND institute, organized by Newell and Simon. The institute held lectures and semi-
nars, taught EPL-IV programming, and demonstrated the Logic Theorist, the General Problem 
Solver, and the EPAM model of memory on the RAND computer. In attendance were some 
individuals who would eventually develop computer simulation methods of their own, including 
George Miller, Robert Abelson, Bert Green, and Roger Shepard.

An early, but deceptive harbinger of acceptance for the new information processing-theory 
was the publication, directly after the summer institute of Plans and the Structure of Behavior 
(Miller, Galanter, & Pribram, 1960), written mostly by George Miller. Despite the 1959 dispute 
with Newell and Simon (mentioned earlier) over the ownership and validity of the ideas within 
it, this book drew a good deal of attention from all areas of psychology.

It would seem the table was set for the new information processing psychology; however, it 
did not take hold. Simon complained of the psychological community who took only a “cau-
tious interest” in their ideas. The “acceptance” part of the tools-to-theories thesis can explain this: 
computers were not yet entrenched in the daily routine of psychologists, as we will show.

No Familiar Tools, No Acceptance

We take two institutions as case studies to demonstrate the part of the tools-to-theories hypoth-
esis that concerns acceptance: the Center for Cognitive Studies at Harvard, and Carnegie Mellon 
University. The former never came to fully embrace the new information-processing psychology. 
The latter did, but after a considerable delay. Tools-to-theories might explain both phenomena.

George Miller, the co-founder of the Center at Harvard, was certainly a proponent of the 
new information-processing psychology. As we mentioned, his book Plans and the Structure of 
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Behavior was so near to Newell and Simon’s ideas that it was at fi rst considered a form of theft, 
although the version of the book that did see the presses is fi lled with citations recognizing 
 Newell, Shaw, and Simon. Given Miller’s enthusiasm, one might expect the Center, partially un-
der Miller’s leadership, to blossom into information-processing research. It never did. Looking at 
the Harvard University Center for Cognitive Studies Annual Reports from 1963–1969, we found 
only a few symposia or papers dealing with computer simulation.

Although the Center had a PDP-4C computer, and the reports anticipated the possibility of 
using it for cognitive simulation, as late as 1969 it never happened. The reports mention that the 
computer served to run experiments, to demonstrate the feasibility of computer research, and to 
draw visitors to the laboratory. However, diffi culties involved with using the tool were consid-
erable. The PDP saw 83 hours of use on an average week in 1965–1966, but 56 of these were 
spent on debugging and maintenance. In the annual reports are several remarks of the type “It 
is diffi cult to program computers … Getting a program to work may take months.” They even 
produced a 1966 technical report called “Programmanship, or how to be one-up on a computer 
without actually ripping out its wires.”

What might have kept the Harvard computer from becoming a metaphor of the mind was 
that the researchers could not integrate this tool into their everyday laboratory routine. The tool 
instead turned out to be a steady source of frustration. As tools-to-theories suggests, this lack of 
entrenchment into everyday practice accounted for the lack of acceptance of the new informa-
tion-processing psychology. Simon (1979) has taken notice of this:

Perhaps the most important factors that impeded the diffusion of the new ideas, however, were the 
unfamiliarity of psychologists with computers and the unavailability on most campuses of machines 
and associated software (list processing programming languages) that were well adapted to cognitive 
simulation. The 1958 RAND Summer Workshop, mentioned earlier, and similar workshops held in 
1962 and 1963, did a good deal to solve the fi rst problem for the 50 or 60 psychologists who participated 
in them; but workshop members often returned to their home campuses to fi nd their local computing 
facilities ill-adapted to their needs. (Simon, 1979, p. 356)

At Carnegie Mellon University, Newell, Simon, a new enthusiastic department head, and a 
very large National Institute of Mental Health (NIMH) grant were pushing “the new IP [infor-
mation processing] religion” (Simon, 1994). Even this concerted effort failed to proselytize the 
majority of researchers within their own department. This again indicates that entrenchment of 
the new tool into everyday practice was an important precondition for the spread of the meta-
phor of the mind as a computer.

Acceptance of Theory Follows Familiarity With Tool

In the late 1950s, at Carnegie Mellon, the fi rst doctoral theses involving computer simulation of 
cognitive processes were being written (Simon, personal communication). However, this was not 
representative of the national state of affairs. In the mid-1960s, a small number of psychologi-
cal laboratories, including at Carnegie Mellon, Harvard, Michigan, Indiana, MIT, and Stanford 
were built around computers (Aaronson, Grupsmith & Aaronson, 1976, p. 130). As indicated 
by the funding history of NIMH grants for cognitive research, the amount of computer-based 
research tripled over the next decade: in 1967, only 15% of the grants being funded had budget 
items related to computers (e.g., programmer salaries, hardware, supplies). By 1975, this fi gure 
had increased to 46%. The late 1960s saw a turn towards mainframe computers, which lasted 
until the late 1970s when the microcomputer began its invasion of the laboratory. In the 1978 
Behavioral Research Methods and Instrumentation conference, microcomputers were the issue of 
the day (Castellan, 1981, p. 93). By 1984, the journal Behavioral Research Methods and Instru-



20 Where Do New Ideas Come From?

mentation appended the word “Computers” to its title to refl ect the broad interest in the new 
tool. By 1980, the cost of computers had dropped an order of magnitude from their cost in 1970 
(Castellan, 1981, 1991). During the last two decades, computers have become the indispensable 
research tool of the psychologist.

Once the tool became entrenched into everyday laboratory routine, a broad acceptance of the 
view of the mind as a computer followed. In the early 1970s, information-processing psychology 
fi nally caught on at Carnegie Mellon University. In the 1973 edition of the Carnegie Symposium 
on Cognition, every CMU-authored article mentions some sort of computer simulation. For the 
rest of the psychological community, who were not as familiar with the tool, the date of broad 
acceptance was years later. In 1979, Simon estimated that from about 1973 to 1979, the number 
of active research scientists working in the information-processing vein had “probably doubled 
or tripled” (Simon, 1979).

This does not mean that the associated methodology became accepted as well. It clashed too 
strongly with the methodological ritual that was institutionalized during the 1940s and 1950s 
in experimental psychology. We use the term “ritual” here for the mechanical practice of a curi-
ous mishmash between Fisher’s and Neyman-Pearson’s statistical techniques that was taught to 
psychologists as the sine qua non of scientifi c method (Gigerenzer, 1993, 2000). Most psycholo-
gists assumed, as the textbooks had told them, that there was only one way to do good science. 
But their own heroes—Fechner, Wundt, Pavlov, Köhler, Bartlett, Piaget, Skinner, Luce, to name 
a few—had never used this “ritual”; some had used experimental practices that resembled the 
newly proposed methods used to study the mind as computer.

Pragmatics

Some of my experimental colleagues have objected to my analysis of how statistical tools turned 
into theories of mind. They argue that tools are irrelevant in discovery, and that my tool-to-
 theories examples are merely illustrations of psychologists being quick to realize that the math-
ematical structure of a tool (such as analysis of variance, or the digital computer) is precisely that 
of the mind. It is not easy to convince someone who believes (in good Neoplatonic fashion) that 
today’s theory of mind exactly fi ts the nature of the mind, that such a splendid theory might mir-
ror something other than pure and simple reality. If it were true that tools have no role in discov-
ery, and that the new theories just happen to mirror the mathematical structure of the tool, then 
the pragmatics of a tool’s use (which is independent of the mathematical structure) would fi nd 
no place in the new theories. However, the case of statistical tools in the fi rst half of this article 
provides evidence that not only the new tool, but also its pragmatic uses are projected into the 
mind. The tools-to-theories heuristic cannot be used to defend a spurious Neoplatonism.

The same process of projecting the pragmatic aspects of a tool’s use onto a theory can be 
shown for the view of the mind as a computer. One example is Levelt’s model of speaking (Levelt, 
1989). The basic unit in Levelt’s model, which he calls the “processing component,” corresponds 
to the computer programmer’s concept of a subroutine. Gigerenzer and Goldstein (1996) argued 
that Levelt’s model not only borrowed the subroutine as a tool, but also borrowed the pragmatics 
of how subroutines are constructed.

A subroutine (or “subprocess”) is a group of computer instructions, usually serving a specifi c 
function, that are separated from the main routine of a computer program. It is common for 
subroutines to perform often-needed functions, such as extracting a cube root or rounding a 
number. There is a major pragmatic issue involved in writing subroutines that centers around 
what is called the principle of isolation (Simon, 1986). The issue is whether subroutines should 
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be black boxes or not. According to the principle of isolation, the internal workings of the sub-
routine should remain a mystery to the main program, and the external program should remain 
a mystery to the subroutine. Subroutines built without respect to the principle of isolation are 
“clear boxes” that can be penetrated from the outside and escaped from the inside. To the com-
puter, of course, it makes no difference whether the subroutines are isolated or not. Subroutines 
that are not isolated work just as well as those that are. The only difference is a psychological 
one. Subroutines that violate the principle of isolation are harder to read, write and debug, from 
a person’s point of view. For this reason, introductory texts on computer programming stress the 
principle of isolation as the essence of good programming style.

The principle of isolation—a pragmatic feature of using subroutines—has a central place in 
Levelt’s model, where the processing components are “black boxes” and constitute what Levelt 
considers to be a defi nition of Fodor’s notion of “informational encapsulation” (Levelt, 1989, 
p. 15). In this way, Levelt’s psychological model embodies a maxim of good computer-programm-
ing methodology: the principle of isolation. That this pragmatic feature of the tool shaped a 
theory of speaking is not an evaluation of the quality of the theory. Our point concerns origins, 
not validity. However, in this case, this pragmatic feature of the subroutine has not always served 
the model well: Kita (1993) and Levinson (1992) have attacked Levelt’s model at its Achilles’ 
heel—its insistence on isolation.

To summarize: I have drawn a full circle from theories of mind to computers and back to 
theories of mind. The argument was that economic changes—the large-scale division of labor 
in manufacturing and in the “bureaux de calculs”—corresponded with the breakdown of the 
Enlightenment conception of the mind, in which calculation was the distinctive essence of intel-
ligence. Once calculation was separated from the rest of intelligence and relegated to the status 
of a dull and repetitive task, Babbage could envision replacing human computers by mechanical 
ones. Both human and mechanical computers manufactured numbers as the factories of the day 
manufactured goods. In the 20th century, the technology became available to make Babbage’s 
dream a reality. Computers became indispensable scientifi c tools for everything from number 
crunching to simulation. Our focus was on the work by Herbert Simon and Allen Newell and 
their colleagues, who proposed the tool as a theory of mind. Their proposal reunited mere calcu-
lation with what was now called “symbol processing,” returning to the Enlightenment concep-
tion of mind. After computers found a place in nearly every psychological laboratory, broad ac-
ceptance of the metaphor of the mind as computer followed.6 Now that the metaphor is in place, 
many fi nd it hard to see how the mind could be anything else: to quote Philip Johnson-Laird 
(1983, p. 10), “The computer is the last metaphor; it need never be supplanted.”

Discovery Reconsidered

New technologies have been a steady source of metaphors of mind: “In my childhood we were 
always assured that the brain was a telephone switchboard. (‘What else could it be?’),” recalls 
John Searle (1984, p. 44). The tools-to-theories heuristic is more specifi c than general technol-
ogy metaphors. Scientists’ tools for justifi cation, not just any tools, are used to understand the 

6 Our reconstruction of the path “from mind to computer and back” also provides an explanation for one 
widespread type of resistance against the computer metaphor of mind. The post-Enlightenment divorce 
between intelligence and calculation still holds to this day, and for those who still associate the computer with 
mere calculation (as opposed to symbol processing) the mind as a computer is a contradiction in itself.
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mind. Holograms are not social scientists’ tools, but computers are, and part of their differential 
acceptance as metaphors of mind by the psychological community may be a result of psycholo-
gists’ differential familiarity with these devices in research practice.

The examples of discovery I gave in this paper are modest instances, compared with the clas-
sical literature in the history of science treating the contribution of a Copernicus or a Darwin. 
But in the narrower context of recent cognitive psychology, however, the theories discussed above 
count as among the most infl uential. In this more prosaic context of discovery, the tools-to-
 theories heuristic can account for a group of signifi cant theoretical innovations.

Also, as I have argued, this discovery heuristic can both open and foreclose new avenues of 
research, depending on the interpretations attached to the statistical tool. My focus was on ana-
lytical tools of justifi cation, and I have not dealt with physical tools of experimentation and data 
processing. Physical tools, once familiar and considered indispensable, also may become the stuff 
of theories. This holds not only for the hardware (like the software) of the computer, but also 
for theory innovation beyond recent cognitive psychology. Smith (1986) argued that Edward C. 
Tolman’s use of the maze as an experimental apparatus transformed Tolman’s conception of pur-
pose and cognition into spatial characteristics, such as cognitive maps. Similarly, he argued that 
Clark L. Hull’s fascination with conditioning machines has shaped Hull’s thinking of behavior 
as if it were machine design.

The tools-to-theories heuristic connects the contexts of discovery and justifi cation, and shows 
that the commonly assumed, fi xed temporal order between discovery and justifi cation—dis covery 
fi rst, justifi cation second—is not a necessary one. I have discussed cases of discovery where tools 
for justifi cation came fi rst, and discovery followed. Let me conclude with some refl ections on 
how the present view stands in relation to major themes in scientifi c discovery.

Data-to-Theories Reconsidered

Should we continue telling our students that new theories originate from new data, if only be-
cause “little is known about how theories come to be created,” as J. R. Anderson introduces the 
reader to his Cognitive Psychology (1980, p. 17)? Holton (1988) noted the tendency among 
physicists to reconstruct discovery with hindsight as originating from new data, even if this is 
not the case. His most prominent example is Einstein’s special theory of relativity, which was 
and still is celebrated as an empirical generalization from Michelson’s experimental data—by 
such eminent fi gures as R. A. Millikan and H. Reichenbach, as well as by textbook writers. As 
Holton demonstrated with fi rst-hand documents, the role of Michelson’s data in the discovery of 
Einstein’s theory was slight, a conclusion shared by Einstein himself.

The strongest claim for an inductive view of discovery came from the Vienna Circle’s em-
phasis on sensory data (reduced to the concept of “pointer readings”). Carnap (1928/1969), 
Reichenbach (1938), and others focused on what they called the “rational reconstruction” of ac-
tual discovery rather than on actual discovery itself, in order to screen out the “merely” irrational 
and psychological. For instance, Reichenbach reconstructed Einstein’s special theory of relativity 
as being “suggested by closest adherence to experimental facts,” a claim that Einstein rejected, 
as mentioned above (see Holton, 1988, p. 296). It seems fair to say that all attempts to logically 
reconstruct discovery in science have failed in practice (Blackwell, 1983, p. 111). The stron-
gest theoretical disclaimer concerning the possibility of a logic of discovery came from Popper, 
Hempel, and other proponents of the hypothetico-deductive account, resulting in the judgment 
that discovery, not being logical, occurs irrationally. Theories are simply “guesses guided by the 
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unscientifi c” (Popper, 1935/1959, p. 278). But rational induction and irrational guesses are not 
exhaustive of scientifi c discovery, and the tools-to-theories heuristic explores the fi eld beyond.

Scientists’ Practice Reconsidered

The tools-to-theories heuristic is about scientists’ practice, that is, the analytical and physical 
tools used in the conduct of empirical research. This practice has a long tradition of neglect. 
The very philosophers who called themselves logical empiricists had, ironically, no interest in the 
empirical practice of scientists. Against their reduction of observation to pointer reading, Kuhn 
(1970) has emphasized the theory-ladenness of observation. Referring to perceptual experiments 
and Gestalt switches, he says, “scientists see new and different things when looking with familiar 
instruments in places they have looked before …” (p. 111). Both the logical empiricists and 
Kuhn were highly infl uential on psychology (see Toulmin & Leary, 1985), but neither view has 
emphasized the role of tools and experimental conduct. Their role in the development of science 
has been grossly underestimated until recently (Danziger, 1985, 1987, 1990; Lenoir, 1988).

Through the lens of theory, we are told, we can understand the growth of knowledge. But 
there is a recent move away from a theory-dominated account of science that pays attention to 
what really happens in the laboratories. Hacking (1983) argued that experimentation has a life 
of its own, and that not all observation is theory-laden. Galison (1987) analyzed modern experi-
mental practice, such as in high-energy physics, focusing on the role of the fi ne-grained web of 
instruments, beliefs, and practice that determine when a “fact” is considered to be established 
and when experiments end. Both Hacking and Galison emphasized the role of the familiarity 
experimenters have with their tools, and the importance and relative autonomy of experimental 
practice in the quest for knowledge. This is the broader context in which the present tools-to-
theories heuristic stands: the conjecture that theory is inseparable from instrumental practices.

In conclusion, my argument is that discovery in recent cognitive psychology can be under-
stood beyond mere inductive generalizations or lucky guesses. More than that, I argue that for a 
considerable group of cognitive theories, neither induction from data nor lucky guesses played an 
important role. Rather, these innovations in theory can be accounted for by the tools-to-theories 
heuristic, as can conceptual problems and possibilities in current theories. Scientists’ tools are not 
neutral. In the present case, the mind has been recreated in their image.
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