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Abstract 
Markov and quantum information processing models are 
compared with respect to their capability of explaining two 
different puzzling findings from empirical research on 
human inference and decision making. Both findings 
involve a task that requires making an inference about one 
of two possible uncertain states, followed by decision about 
two possible courses of action. Two conditions are 
compared: under one condition, the decisions are obtained 
after discovering or measuring the uncertain state; under 
another condition, choices are obtained before resolving the 
uncertainty so that the state remains unknown or 
unmeasured. Systematic departures from the Markov  model 
are observed, and these deviations are explained as 
interference effects using the quantum model. 

 
Quantum computing and information theory (Neilsen & 
Chuang, 2000) provides exciting new possibilities for 
computer science. But what importance does this new 
theory have for cognitive science? This is a question that is 
beginning to be asked by an increasing number researchers 
from a variety of fields including language (Gabora & 
Aerts, 2002), decision making (Bordley, 1998; Haven, 
2006; LaMura, 2006; Mogiliansky, Zamir, & Zwirn, 2004) 
game theory (Eisert, Wilkens, & Lewenstein, 1999; 
Piotrowski, & Sladkowski, 2003) and neural nets (Gupta & 
Zia, 2001; Pribram, 1993). 
 
Recently, we (Busemeyer, Matthews, & Wang, 2006) used 
quantum information processing theory to explain a 
puzzling decision making phenomenon discovered by 
Tversky and Shafir (1992). Here we show that this same 
quantum explanation can also explain another (seemingly 
unrelated) finding from decision making discovered by 
Townsend, Silva, Spencer-Smith, and Wenger (2000). 
Both findings point to a fundamental interaction or 
entanglement between inference and decision.  
  
The Disjunction Effect 
 
Our first attempt to model interactions between inference 
and decision was based on an intriguing phenomena 
discovered by Tversky & Shafir (1992, see also Shafir and 
Tversky , 1992).  An experiment was conducted in which 
participants were asked to play a gamble of the form ‘equal 

chance to win $200 or lose $100.’ The unique aspect of 
this experiment was that the participants were also told that 
they would have an opportunity to play the gamble twice. 
The first play was obligatory, but they could decide 
whether or not to play the second time.  Three conditions 
were investigated: in the known win condition, they were 
told that they won the first play; in the known lose 
condition, they were told that they lost the first play; and in 
the unknown condition, they were not told the outcome of 
the first play.  
 
This manipulation is designed to test the ‘sure thing’ 
principle that lies at the foundation of utility theory 
(Savage, 1954): If you prefer to gamble the second play 
knowing that you won the first play and you prefer to 
gamble the second play knowing that you lost the first 
play, then you should prefer to gamble the second play 
even when you do not know the outcome of the first play.  
 
Shafir and Tversky (1992) found that players frequently 
violated the sure thing principle – most players chose to 
gamble the second play knowing that they won the first 
play (69%), and they also chose to gamble the second play 
knowing that they lost the first play (59%); but they 
switched and chose not to gamble when they did not know 
the outcome of the first play (36%).   
  
Next we will consider two alternative models for this 
phenomenon. The first is based on Markov probability 
theory, and the second is based on quantum probability 
theory.  We formulate the models in a parallel manner in 
order to clearly see the common and distinctive 
assumptions of  the two models. 
 
A Markov Information Processing Model 
To construct a Markov model for this phenomenon, we 
postulate that there are two states of beliefs about the 
outcome of the first play: win or lose. Additionally, there 
are two states of action for you to take: gamble or not. We 
assume that a person can simultaneously consider beliefs 
and actions which then produces four basis states denoted 
{|WG〉, |WN〉, |LG〉, |LN〉}. For example, |WN〉 represents 



the case where you simultaneously believe that you won 
the first play but you do not intend to gamble on the second 
round.  
 
The state of the cognitive system (that is, the part needed 
for modeling this task) is represented by a 4 × 1 column 
vector ψ = [ψWG, ψWN, ψLG, ψLN]. According to Markov 
theory, this state vector is a probability distribution across 
the basis states. For example, ψWN represents the 
probability of the Markov system being observed in state 
|WN〉. The elements of the state vector must sum to unity 
to guarantee that it forms a proper probability distribution.  
 
The state of the cognitive system is changed by thoughts 
generated by interacting with the environment. In terms of 
the Markov model, a thought is represented by a transition 
operator, denoted T, which changes the state from one 
vector ψ to another ϕ = T⋅ψ. For this application, the 
transition operator is represented by a 4 × 4 matrix T with 
elements that satisfy 0 ≤ Tij ≤ 1, and ∑iTij = 1. These 
constraints guarantee that the new state ϕ remains to be a 
probability distribution.  
 
The initial state vector represents the state of the cognitive 
system at the beginning of each trial. This initial state is 
changed by information given to the player. If the player is 
informed that he/she won the first gamble, then an operator 
T is applied to transform the initial state into one that has 
ψLG = ψLN = 0 producing ψW = [αW,βW,0,0], where βW= 1 
− αW. If the player is informed that he/she lost the first 
gamble, then another operator is applied that transforms 
the initial state into one that has ψLG = ψLN = 0 to produce 
ψL = [0,0,αL,βL], where βL = 1 − αL. In the unknown case, 
the state remains mixed: ψU = p⋅ψW + q⋅ψL, where p and q 
= (1−p) are the mixture probabilities.   
 
To select an action, the player must evaluate the 
probabilities and payoffs of the gamble. Thus the state ψ is 
processed by a transition operator Tt for some period of 
time t, which transforms the previous state into a final state 
ϕ = Tt · ψ, which produces a column vector ϕ = [ϕWG, ϕWN, 
ϕLG, ϕLN].  For example, ϕWG is the final probability of 
gambling the second play given that the player is known to 
win the first play. 
 
The final response probabilities are obtained by projecting 
the final state vector onto the subspace consistent with an 
observed response. Define M as a 4 × 4 measurement 
matrix with the first row equal to [1 0 0 0] and the second 
row equal to [0 0 1 0], and the last two rows equal to zeros.  
The product φ = M⋅ϕ produces a 4 × 1 vector that 
represents the projection of the state onto the bases that 
lead one to choose to gamble on the second play. Finally, 
define L = [1 1 1 1] as a row vector of ones, then L⋅φ  = 
ϕWG + ϕLG gives the total probability of gambling on the 
second play.  
  

The Markov strategy Tt can be constructed from an 
intensity matrix K as follows: Tt = exp(t·K). (This uses a 
matrix exponential function, which is available in MatLab 
or Mathematica). The processing time parameter, t, is a 
free parameter in the model, but it can be manipulated by 
deadline pressure. The intensities must satisfy kij ≥ 0  for i 
≠ j and ∑ikij = 0 to guarantee that exp(t·K) is a transition 
matrix. 
 
We use an intensity matrix that has the following general 
form: the off diagonal elements k21 ≠ k12 and k43 ≠ k34 allow 
probability flow across two actions within each belief state; 
the interactions between beliefs and actions are modeled by 
allowing flow between actions that match beliefs, k41 ≠ k14.  
The diagonal values are set equal to k11 = −(k21 + k41), k22 = 
−k12, k33 = −k43, and k44 = −(k14 + k34). The remaining 
elements within K are assumed to be zero. 
 
To see how the model works, first consider a special case 
in which the initial state is uniform (ψ = [1 1 1 1]/4) and 
the interactions between beliefs and actions is turned off 
(k14 = k14 = 0). In this case, the preferences for the two 
actions evolve independently and separately for each belief 
state. For example, setting k12 = k34 = .10, k21 = k43 = .01, 
and k41 = k14 = 0 produces a bias to choose to gamble. The 
probability of choosing to gamble grows systematically 
from .50 to .91 across time, and the probability of choosing 
not to gamble decreases from .50 to .09 across time.   
 
Failure of the Markov Model. It is simple to prove that 
the Markov model cannot, in general, explain the 
disjunction effect.  If the first play is known to be a win, 
then we obtain L⋅φW = L⋅MϕW = L⋅M⋅TtψW; and if the first 
play is known to be a loss, then we obtain L⋅φL = L⋅MϕL = 
L⋅M⋅TtψL. During the unknown condition, we obtain L⋅φU = 
L⋅MϕU = L⋅M⋅TtψU = L⋅M⋅Tt(p⋅ψW + q⋅ψL) = p⋅L⋅M⋅TtψW + 
q⋅L⋅M⋅Tt ψL = (p⋅L⋅φW + q⋅L⋅φL).  
 
The last line states that the probability of gambling in the 
unknown case must be the average of the probabilities of 
gambling in the two known cases.  However, Tversky and 
Shafir (1992) reported a gambling rate equal to 36% for the 
unknown state, which fell far below the range defined by 
the two known states: 69% when the other player was 
known to win and 59% when the other player was known 
to lose. This finding contradicts the Markov processing 
model.  

A Quantum Information Processing Model.  
To construct a quantum model for this phenomenon, we 
again postulate that there are two states of beliefs about the 
first play: win or lose. Additionally, there are two states of 
action for you to take, again gamble or not. Again we 
assume that a person can simultaneously consider beliefs 
and actions which then produces four basis states denoted 
{|WG〉, |WN〉, |LG〉, |LN〉}. As before, |WN〉 represents the 
case where you simultaneously believe that you won on the 



first play but you intend not to gamble on the second 
round.  
 
The state of the cognitive system is once again represented 
by a 4 × 1 column vector: ψ = [ψWG, ψWN, ψLG, ψLN]. 
According to quantum theory, the state vector is a 
probability amplitude distribution across the basis states. 
For example, ψWG represents the probability amplitude of 
the quantum system being observed in state |WG〉. The 
probability of observing this state is |ψWG|2.  The state 
vector must be unit length to guarantee that the state 
probabilities sum to unity.  
 
The state of the cognitive system is changed by thoughts 
generated by interacting with the environment. In terms of 
the quantum model, a thought is represented by a unitary 
operator, denoted U, which changes the state from one 
vector ψ to another ϕ = U⋅ψ. For this application, the 
unitary operator is represented by a 4 × 4 unitary matrix U 
with the property U†U = I, where I is the identity matrix. 
The matrix U must be unitary in order to preserve the unit 
length property of the state vector.  
 
The initial state vector represents the state of the cognitive 
system at the beginning of each trial. This initial state is 
changed by information given to the player. If the player is 
informed that he/she won the first gamble, then an operator 
U is applied to transform the initial state into one that has 
ψLG = ψLN = 0 producing ψW = [αW,βW,0,0], where βW

2 = 1 
− αW

2. If the player is informed that he/she lost the first 
play, then another operator is applied that transforms the 
initial state into one that has ψWG = ψWN = 0 to produce ψL 
= [0,0,αL,βL], where βL

2 = 1 − αL
2. In the unknown case, 

the state remains in superposition ψU = √p · ψW + √q · ψL.   
 
To select a strategy, the player must evaluate the payoffs of 
the actions. Thus the state ψ is processed by a quantum 
operator Ut for some period of time t which transforms the 
previous state into a final state ϕ = Ut · ψ = [ϕWG, ϕWN, 
ϕLG, ϕLN].    
 
Once again, the final response probabilities are obtained by 
projecting the final state vector onto the subspace 
consistent with an observed response. Define M as a 4 × 4 
measurement matrix with the first row equal to [1 0 0 0] 
and the second row equal to [0 0 1 0], and the last two 
rows equal to zeros.  The product φ = M⋅ϕ produces a 4 × 1 
vector that represents the projection of the state onto the 
bases that lead one to choose to gamble on the second 
round. The squared length, |φ|2 = φ†φ = |ϕWG|2 +|ϕLG|2, gives 
the total probability of gambling on the second round.  
 
The quantum strategy Ut can be constructed from a 
Hamiltonian matrix H as follows: Ut = exp(−i·t·H). (This 
uses a complex matrix exponential function, which is 
available in MatLab or Mathematica). Here i = √-1 and this 
factor is required to guarantee that Ut is unitary. The 
processing time parameter, t, is a free parameter in the 

model, but it can be manipulated by deadline pressure. In 
general, the Hamiltonian H must be Hermitian (H = H†) to 
guarantee that Ut is unitary. For this application, the 
Hamiltonian is a 4 × 4 matrix with elements hij  = hji*. 
 
We use a Hamiltonian that has the following general form: 
the diagonal elements, hjj, for j = 1,4, are determined by the 
payoffs; the off diagonal elements h21 = h12 and h34 = h43 
allow probability amplitude flow across two actions within 
each belief state; most importantly, the interactions 
between beliefs and actions are captured by allowing flow 
between actions that match beliefs, h41 = h14. The 
remaining elements within H are assumed to be zero. 
 
To see how the model works, first consider a special case 
in which the initial state is uniform (ψ = [1 1 1 1]/2) and 
the interactions between beliefs and actions is turned off 
(h14 = h14 = 0). In this case, there is no entanglement 
generated between the belief states and the action states, 
and the preferences for the two actions evolve 
independently and separately for each belief state. For 
example, setting h11 = h33 = 5, h22 = h44 = 0, h21 = h12 = h34 
= h43 = .2 produces a bias to choose to gamble. The 
probability of choosing to gamble oscillates or beats from 
.50 to .60 across time, and the probability of choosing to 
not gamble oscillates from .50 to .40 across time.  
However, with the interaction parameter turned off, the 
model cannot account for the disjunction effect. 
 
To allow interactions to occur between beliefs and actions, 
we need to use the interaction parameter, h41 = h14.  In 
particular, the following parameter settings perfectly 
reproduce the Tversky and Shafir (1992) results:  αW = 1, 
αL = .4061, t = .8614, h11 = 2.3479, h14 = -1. In this case, 
the model predicts gambling rates equal to .69, .59, .36, for 
the known win, known loss, and unknown cases 
respectively.   
 
Intereference and Engtanglement. So, how does the 
quantum model produce this disjunction effect?   Recall 
that the Markov information processing model fails 
because it must predict that the defection rate for the 
unknown condition is an average of the rates for the two 
known conditions. The quantum model violates this 
property because interference effects occur under the 
unknown condition.  
 
If the player is known to win, then we obtain φW

†φW = 
(MϕW)†(MϕW) = (MUtψW)†(MUtψW), and if the opponent is 
known to lose, then we obtain φL

†φL = (MϕL)†(MϕL) = 
(MUtψL)†(MUtψL). During the unknown condition, we 
obtain φU

†φU = (MϕU)†(MϕU) = (MUtψU)†(MUtψU) = 
[MUt(√p⋅ψW + √q⋅ψL)]†[MUt(√p⋅ψW + √q⋅ψL)] 
= (√pφW + √qφL)†(√pφW + √qφL) = (pφW

†φW + qφL
†φL) + 

√p√qφW
†φL.  

 
The latter term √p√qφD

†φC is called the interference term. 
If it is zero, then the quantum model makes the same 



predictions as the Markov model, and consequently it fails 
to account for the disjunction effect. However, if the 
interference term is negative, then it can reduce the 
defection rate during the unknown condition below the 
rates for the known condition. In sum, the superposition 
state that is generated by the unknown information 
condition is required to produce the interference effect. But 
it is not sufficient. 
 
Why is the interference term negative for this quantum 
model? This is generated by the coordinating link h14 = h41 
= −1 in the Hamiltonian, which is used to generate the 
quantum strategy Ut. This causes the states of the quantum 
system to become entangled. If this link was turned off, by 
setting h14 = h41 = 0, then the interference effect disappears. 
This is true even when the unknown condition produces a 
superposition state. In conclusion, the combination of 
superposition and entanglement are required to explain the 
disjunction effect.  

Categorization – Decision Interactions 
Recently another interesting example of an interaction 
between inference and decision has been reported by 
Townsend, Silva, Spencer-Smith, and Wenger (2000). In 
this experiment, participants were (a) shown pictures of 
faces, (b) asked to categorize the faces as belonging to 
either a ‘good guy’ or ‘bad guy’ group, and then (c) 
decide to act friendly or aggressive.  

The faces varied according to two salient cue conditions 
that were probabilistically related to the categories: if the 
‘good guy’ cue condition was present, then there was a 
.60 probability that the face belonged to the ‘good guy’ 
group; likewise if the ‘bad guy’ cue condition was 
present, then there was a .60 probability that the face 
belonged to the ‘bad guy’ group.  The actions were 
rewarded (by winning money) or punished (by losing 
money) according to a probabilistic scheme as well. If 
the face was generated by the ‘bad guy’ group, then 
acting aggressively was rewarded with probability .70; 
similarly if the face was generated by the ‘good guy’ 
group, then acting friendly was rewarded with 
probability .70.  
 
Participants were given full information about the cues and 
the associated probabilities during the instruction period. 
The optimal decision rule for this situation is deterministic: 
when the ‘good guy’ cues are present, always decide to act 
friendly; when the ‘bad guy’ cues are present, always 
decide to act aggressively. From a total of 154 participants, 
approximately 16 were nearly optimal decision makers, 
and the remainder followed a non optimal probabilistic 
strategy.  
 
The key manipulation resembles the manipulation used to 
study the disjunction effect. In one condition participants 
made an action decision after categorizing a face as a 

‘good guy’; in a second condition participants made an 
action decision after categorizing a face as a ‘bad guy’; and 
in a third condition participants made an action decision 
without reporting any categorization.   
 
Testing the Markov Model. Townsend et al. (2000) tested 
a Markov model, which we reformulate here to match our 
earlier model for the disjunction effect.  There are two 
states of beliefs about the category: ‘good guys’ versus 
‘bad guys.’  Additionally, there are two states of action to 
take, attack versus friendly. Once again we assume that a 
person can simultaneously consider beliefs and actions, 
which then produces four basis states denoted {|GF〉, |GA〉, 
|BF〉, |BA〉}. For example, |GA〉 represents the case where 
you simultaneously believe that category is ‘good guy’ but 
you intend to act aggressively. The Markov state is 
represented by ψ = [ψGF, ψGA, ψBF, ψBA]. For example, 
ψGA is the probability of categorizing the cue as a ‘good 
guy’ and deciding to attack.  

This initial state is changed by the categorization 
measurements taken on the decision maker. If the 
decision maker has categorized the cue as a ‘good guy’, 
then this measurement causes a collapse of the state 
vector onto the subspace consistent with this observation 
so that one has ψBF = ψBA = 0 producing ψG = [αG, ,βG , 
0 , 0], where βG = 1−αG (e.g., βG = .30 to match the 
probability of the correct action given this category).  If 
the decision maker has categorized the cue as a ‘bad 
guy’, then this measurement causes a collapse of the 
state vector onto the appropriate subspace to produce 
ψGF = ψGA = 0 so that ψB = [0,0,αB,βB], where βB = 
1−αB (e.g., βB = .70 to match the probability of the 
correct action given this category). In the unknown case, 
the state remains in a mixed state ψU = p·ψG + q·ψB, 
where p and q = 1−p are determined by the cue that is 
presented (e.g., p = .60 if the good guy cue is present, 
otherwise p = .4 if the bad guy cue is present). 
 
To select a strategy, the decision maker must evaluate the 
payoffs of the actions. Thus the state ψ is processed by a 
transition operator Tt for some period of time t which 
transforms the previous state into a final state ϕ = Tt · ψ = 
[ϕGF, ϕGA, ϕBF, ϕBA]. As before, the Markov strategy Tt can 
be constructed from a intensity matrix K as follows: Tt = 
exp(t·K). We assume the same form of intensity matrix as 
defined earlier. 
 
The final response probabilities are obtained by projecting 
the final state vector onto the subspace consistent with an 
observed response. Define M as a 4 × 4 measurement 
matrix with the first row equal to [0 1 0 0] and the second 
row equal to [0 0 0 1], and the last two rows equal to zeros.  
The product φ = M⋅ϕ produces a 4 × 1 vector that 
represents the projection of the state onto the bases that 
lead one to choose to attack. Finally, define L = [1 1 1 1] as 
a row vector of ones, then L⋅φ  = ϕGA + ϕBA gives the total 
probability of attacking.  



 
The Markov model makes the following predictions for the 
three experimental conditions:  If the cue was reported to 
be categorized in the ‘good guy’ group, then the 
probability of attack is L⋅φG = L⋅MϕG = L⋅M⋅TtψG; if the 
cue was reported to be categorized in the ‘bad guy’ group, 
then the probability of attack is L⋅φB = L⋅MϕB = L⋅M⋅TtψB; 
if an action was taken without reporting the category, then 
the probability of attack is the average L⋅φU = L⋅MϕU = 
L⋅M⋅TtψU = L⋅M⋅Tt(p⋅ψG + q⋅ψB) = p⋅L⋅M⋅Tt⋅ψG + 
q⋅L⋅M⋅Tt⋅ψB = (p⋅L⋅φG + q⋅L⋅φB).  
 
Townsend et al. (2000) estimated the three parameters (p, 
L⋅φG, L⋅φB) using the results obtained when participants 
were asked to first categorize and then decide how to act. 
These parameters were estimated separately for each 
participant. Then these parameters were used to predict the 
results when participants were only asked to decide how to 
act (without reporting the category of the cue). Based on 
these predictions, chi – square lack of fit tests (using a .05 
rejection criterion) were conducted to statistically test 
deviations from the Markov model. Townsend et al. (2000) 
reported that 38 out of 138 probabilistic responders 
produced statistically significant deviations from the 
predictions of the Markov model under one cue condition, 
and 34 out of 138 probabilistic responders produced 
statistically significant violations under the alternative cue 
condition. (The optimal decision makers were excluded 
from this test because of their deterministic behavior).  
 
While the majority of participants did not produce 
statistically significant violations, a sizeable minority did. 
Furthermore, many more participants could have 
deviations from the Markov model that did not quite reach 
the strict .05 level of significance. Unfortunately, 
Townsend et al. (2000) did not report the actual choice 
probabilities and so we cannot determine the direction of 
the deviations from the Markov model. New experiments 
are currently underway to examine this effect in more 
detail. 
 
Re-applying the Quantum Model.  To map our quantum 
model onto this categorization – decision task, we make 
assumptions similar to the Markov model above.  Once 
again we assume four basis states to simultaneously 
represent the ‘good and bad’ categories and ‘attack and 
friendly’ actions denoted {|GF〉, |GA〉, |BF〉, |BA〉}. The 
quantum state is defined ψ = [ψGF, ψGA, ψBF, ψBA]. For 
example, ψGA is the probability amplitude of categorizing 
the cue as a ‘good guy’ and deciding to attack.  
 
If the decision maker has categorized the cue as a ‘good 
guy’, then this measurement causes a collapse of the state 
vector onto the subspace consistent with this observation 
so that one has ψBF = ψBA = 0 producing ψG = [αG, ,βG , 0 , 
0], where βG

2 = 1−αG
2  (e.g., βG

2 = .30 to match the 

probability of the correct action given this category). If the 
decision maker has categorized the cue as a ‘bad guy’, then 
this measurement causes a collapse of the state vector onto 
the appropriate subspace to produce ψGF = ψGA = 0 so that 
ψB = [0,0,αB,βB], where βB

2 = 1−αB
2 (e.g., βB

2  = .70 to 
match the correct response probability given this category). 
In the unknown case, the state remains in superposition ψU 
= √p·ψG + √q·ψB, where p is determined by the cue that is 
presented (e.g.  p = .6 if the good guy cue is present, 
otherwise p = .4 if the bad guy cue is present).   
 
To select a strategy, the decision maker must evaluate the 
payoffs of the actions. Thus the state ψ is processed by a 
quantum operator Ut for some period of time t which 
transforms the previous state into a final state ϕ = Ut · ψ = 
[ϕGF, ϕGA, ϕBF, ϕBA].  
 
As before, the quantum strategy Ut can be constructed from 
a Hamiltonian matrix H as follows: Ut = exp(−i·t·H). We 
use the same Hamiltonian as defined earlier with the 
following general form: the diagonal elements, hjj, for j = 
1,4, are determined by the payoffs; the off diagonal 
elements h21 = h12 and h34 = h43 allow probability amplitude 
flow across two actions within each belief state; most 
importantly, the interactions between beliefs and actions 
are captured by allowing flow between actions that match 
beliefs, h41 = h14. The remaining elements within H are 
assumed to be zero. 
 
The final response probabilities are obtained by projecting 
the final state vector onto the subspace consistent with an 
observed response. Define M as a 4 × 4 measurement 
matrix with the first row equal to [0 1 0 0] and the second 
row equal to [0 0 0 1], and the last two rows equal to zeros.  
The product φ = M⋅ϕ produces a 4 × 1 vector that 
represents the projection of the state onto the bases that 
lead one to choose to attack. The squared length, |φ|2 = φ†φ 
= |ϕGA|2 +|ϕBA|2, gives the total probability of attacking. 
 
To see how the model works, first consider a special case 
in which the initial state is uniform (ψ = [1 1 1 1]/2) and 
the interactions between beliefs and actions is turned off 
(h14 = h14 = 0). In this case, there is no entanglement 
generated between the belief states and the action states, 
and the preferences for the two actions evolve 
independently and separately for each belief state. For 
example, setting h11 = 1 (reward for correct response), h22 = 
0 (error), h33 = 0 (error), h44 = .5 (correct but with a smaller 
reward), and h21 = h12 = h34 = h43 = .3 produces a bias to 
choose to the correct responses for each category. The 
probability of choosing correctly oscillates or beats from 
.50 to 1.0 across time, and the probability of choosing 
incorrectly oscillates from .50 to 0.0 across time.  
However, with the interaction parameter turned off, the 
model cannot account for systematic deviations from the 
Markov model. 
 



Once again, to allow interactions to occur between beliefs 
and actions, we need to use the interaction parameter, h41 = 
h14.  Consider the following simple example. Suppose a 
good guy cue is presented. Given that a ‘good guy’ 
category is selected for this cue, then the initial state is set 
equal to  ψ  = [√.7, √.3, 0, 0]; given that a ‘bad guy’ 
category is selected for this cue, then the initial state is set 
equal to ψ  = [0, 0 , √.3, √.7]; when a categorization is not 
made before the decision, then the initial state is set equal 
to ψ  = √.6⋅[√.7, √.3, 0, 0] + √.4⋅ [0, 0 , √.3, √.7]. The 
remaining parameters can be set as in the previous 
example: h11 =1,  h22 =  h33 = 0, h44 = .50, h21 = h12 = h34 = 
h43 = .3, except that now we turn on the interaction 
parameter by setting it equal to h14 = h14 = -.05. In this 
case, the model produces systematic deviations from the 
predictions of the Markov model across a wide range of 
time periods. In particular, from the time point t = 0 until t 
= 5, the probability of choosing to attack falls 
systematically above the predictions of the Markov model. 
If the interaction parameter is set to h14 = h14 = .05, then the 
quantum model makes predictions that are systematically 
below those of the Markov model for the same time period. 
At time t = 2.5 for example, the quantum model deviates 
by .10 from the predictions of the Markov model.  
 

Summary and Concluding Comments 
 
In summary, we have shown that a simple quantum 
information processing model can explain some puzzling 
findings concerning interactions between inference and 
decision making from two entirely different domains. One 
is the disjunction effect obtained with two stage gambling 
game when the player does or does not know the outcome 
of the first round (Tversky & Shafir, 1992). The second is 
significant violations of a Markov model obtained in a 
decision task depending on whether or not a prior 
categorization measurement was taken (Townsend, et al., 
2000). The quantum model was useful for providing a 
common framework for understanding and explaining 
these two different phenomena.  In both cases the 
explanation was based on an interference effect that occurs 
when (a) the initial state under the uncertain condition is a 
superposition of the initial states obtained under the known 
conditions; and (b) an entanglement of the belief and 
actions states occurs during the decision process. 
 
These theoretical results should be considered very 
preliminary.  They simply show that the quantum model is 
sufficient to explain the general patterns. Rigorous tests of 
the predictions of the quantum model need to be carried 
out after new experiments are completed.  However we 
think that a quantum information processing approach may 
provide some valuable insights to other puzzling 
phenomena in judgment and decision research.  Below we 
provide some more general reasons for examining a 
quantum computing approach. 

Why Consider a Quantum Information Processing 
Approach?    
Human choice behavior is inherently probabilistic. For 
example, when asked to choose between two gambles, an 
individual’s choices are indeterministic, even when all 
information about the probabilities and outcomes are 
known a priori. For example, suppose an individual is 
presented a choice between playing or not playing a 
gamble that gives equal chance of winning $12.50 or 
losing $10.00. If this problem is presented to an individual 
on two different occasions (separated by other filler 
problems), then there is about a 20% chance that the 
person will change his or her preference (see Rieskamp, 
Busemeyer, Mellers, 2006, for a review of preferential 
choice). This is found even though real money is a stake. 
Note that people are not random or indifferent, because 
there is a general (80%) tendency to prefer one of the 
choices option. Yet these simple choices are inherently 
uncertain. What is the source of this variability? 
 
Classical probabilistic choice models (e.g., random utility 
models) have been formulated to account for probabilistic 
choices (see Rieskamp et al. 2006). Yet there is something 
unusual about the probabilistic nature of choice by humans 
that is not captured by these theories. Good experimenters 
know that if you present the same choice problem back to 
back, without any filler problems, then choice behavior is 
surprisingly deterministic – people simply choose the same 
as before. A good experimentalist never repeats a problem 
immediately, but instead, separates the repetition with filler 
problems. Choice becomes probabilistic only when a 
problem is repeated with fillers in between repetitions. 
 
This intuitively obvious fact is not so easily explained by 
classic probabilistic choice models, such as random utility 
models. They predict probabilistic choices even with back 
to back replications, which are of course never observed. 
But the unusual nature of probabilistic choice is exactly 
what one would predict from a quantum choice 
mechanism.  
 
According to quantum principles, prior to the first 
measurement on a choice problem, the individual is in a 
superposition state, and the choice is inherently 
unpredictable. However, following the observation of a 
choice, this measurement causes the superposition state to 
collapse, and subsequent choices remain identical. That is 
until the state is disturbed by another measurement on a 
different (filler) problem. The measurement on the filler 
problem causes a collapse to a new state corresponding to 
the choice on the filler problem. But this new state will not 
be identical to the original state on the initial problem, and 
thus the decision maker is once again placed in an 
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uncertain superposition state with respect to the original 
problem. 
 
A second fact about human behavior, commonly known by 
good experimenters, is that the order of measurement often 
(but not always) has an important effect on judgment tasks. 
For example, consider asking responses from a teenager 
from two different questions: (a) How happy are you with 
your life in general, and (b) how many dates did you have 
last month. The answers obtained from the AB order turn 
out to be quite different than the opposite BA order. These 
order effects are generally considered a big nuisance by 
experimenters, because of a lack of a good explanation for 
them. Instead, experimenters counterbalance the order of 
presentation across individuals and average across different 
orders, hoping that the order effects will magically cancel 
so that they can be ignored.  
 
Quantum principles provide a natural explanation for order 
effects on choice.  Incompatible measurements represent 
quantities that cannot be experienced simultaneously. 
These incompatible measurements can only be experienced 
serially, in which case the order of measurement changes 
the results. On the other hand, compatible measurements 
represent quantities that can coexist simultaneously in 
parallel, in which case the order of measurement has no 
effect. Thus order effects reflect incompatible 
measurements that need to be processed serially and the 
lack of order effects reflect compatible measurements that 
can be processed in parallel.  

What are the goals of Quantum Information 
Processing Theory?  
It is also worthwhile to discuss the depth of the scientific 
goals of the quantum models that we are considering. 
Some theorists (e.g., Pribram, 1993; Penrose, 1989; Woolf 
& Hameroff, 2001) take a strong position that the brain 
(e.g., microtubles within neurons) actually operates on the 
basis of the quantum mechanical laws of Physics.  We are 
not so ambitious and instead we wish to explore the utility 
of the mathematical framework without making any 
commitments to neural processes (cf. Busemeyer, 
Townsend, & Wang, 2006). Many of the mathematical 
tools currently used by cognitive scientists (e.g., stochastic 
processes, differential equations) originated from 
applications in Physics. In fact, most of the tools used by 
cognitive scientists originated from classical mechanics 
(e.g. Newtonian mechanics, statistical mechanics). But 
only the mathematical tools were carried over to the 
cognitive science applications, because there is little a 
priori reason for the cognitive processes to obey laws of 
Physics.  For example, recurrent dynamic neural network 
models use a lot of the mathematics originally developed 
by physicists to study classical dynamics, but these neural 
network models do not necessarily obey the Newtonian 
laws of motion. This is a delicate issue because we do 
believe that cognitive processes are based on brain 
mechanisms, which in turn are based on biochemical 

processes, and so at some point this issue must be directly 
addressed. However, at this early stage, we are using 
quantum computing as a mathematical tool for developing 
abstract models of human behavior. We do not wish to be 
overzealous but just enthusiastic. 
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